Skip to main content
Log in

Quantification of myocardial blood flow with 11C-hydroxyephedrine dynamic PET: comparison with 15O-H2O PET

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

11C-hydroxyephedrine (HED) PET has been used to evaluate the myocardial sympathetic nervous system (SNS). Here we sought to establish a simultaneous approach for quantifying both myocardial blood flow (MBF) and the SNS from a single HED PET scan.

Methods

Ten controls and 13 patients with suspected cardiac disease were enrolled. The inflow rate of 11C-HED (K1) was obtained using a one-tissue-compartment model. We compared this rate with the MBF derived from 15O-H2O PET. In the controls, the relationship between K1 from 11C-HED PET and the MBF from 15O-H2O PET was linked by the Renkin-Crone model.

Results

The relationship between K1 from 11C-HED PET and the MBF from 15O-H2O PET from the controls’ data was approximated as follows: K1  =  (1 − 0.891 * exp(− 0.146/MBF)) * MBF. In the validation set, the correlation coefficient demonstrated a significantly high relationship for both the whole left ventricle (r = 0.95, P < 0.001) and three coronary territories (left anterior descending artery: r = 0.96, left circumflex artery: r = 0.81, right coronary artery: r =  0.86; P < 0.001, respectively).

Conclusion

11C-HED can simultaneously estimate MBF and sympathetic nervous function without requiring an additional MBF scan for assessing mismatch areas between MBF and SNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

HED:

Hydroxyephedrine

HR:

Heart rate

K1:

Inflow rate of 11C-HED

LV:

Left ventricle

MBF:

Myocardial blood flow

PET:

Positron emission tomography

RI:

Retention index

rMBFs:

3-coronary-regional MBFs

ROI:

Region of interest

SNS:

Sympathetic nervous system

References

  1. DeGrado TR, Hutchins GD, Toorongian SA, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-meta-hydroxyephedrine: Retention mechanisms and effects of norepinephrine. J Nucl Med. 1993;34:1287–93.

    CAS  PubMed  Google Scholar 

  2. Al Badarin FJ, Wimmer AP, Kennedy KF, Jacobson AF, Bateman TM. The utility of ADMIRE-HF risk score in predicting serious arrhythmic events in heart failure patients: Incremental prognostic benefit of cardiac 123I-mIBG scintigraphy. J Nucl Cardiol. 2014;21:756–62; quiz 3–55, 63–5.

  3. Fallavollita JA, Heavey BM, Luisi AJ Jr, Michalek SM, Baldwa S, Mashtare TL Jr, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63:141–9.

    Article  Google Scholar 

  4. Bulow HP, Stahl F, Lauer B, Nekolla SG, Schuler G, Schwaiger M, et al. Alterations of myocardial presynaptic sympathetic innervation in patients with multi-vessel coronary artery disease but without history of myocardial infarction. Nucl Med Commun. 2003;24:233–9.

    Article  CAS  Google Scholar 

  5. Harms HJ, Lubberink M, de Haan S, Knaapen P, Huisman MC, Schuit RC, et al. Use of a single 11C-meta-hydroxyephedrine scan for assessing flow-innervation mismatches in patients with ischemic cardiomyopathy. J Nucl Med. 2015;56:1706–11.

    Article  CAS  Google Scholar 

  6. Aikawa T, Naya M, Obara M, Manabe O, Tomiyama Y, Magota K, et al. Impaired myocardial sympathetic innervation is associated with diastolic dysfunction in patients with heart failure with preserved ejection fraction: 11C-hydroxyephedrine PET study. J Nucl Med. 2017;58(5):784–90.

  7. Katoh C, Morita K, Shiga T, Kubo N, Nakada K, Tamaki N. Improvement of algorithm for quantification of regional myocardial blood flow using 15O-water with PET. J Nucl Med. 2004;45:1908–16.

    PubMed  Google Scholar 

  8. Schwaiger M, Kalff V, Rosenspire K, Haka MS, Molina E, Hutchins GD, et al. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation. 1990;82:457–64.

    Article  CAS  Google Scholar 

  9. Crone C. The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol Scand. 1963;58:292–305.

    Article  CAS  Google Scholar 

  10. Li Y, Zhang W, Wu H, Liu G. Advanced tracers in PET imaging of cardiovascular disease. Biomed Res Int. 2014;2014:504532.

    PubMed  PubMed Central  Google Scholar 

  11. Katoh C, Yoshinaga K, Klein R, Kasai K, Tomiyama Y, Manabe O, et al. Quantification of regional myocardial blood flow estimation with three-dimensional dynamic rubidium-82 PET and modified spillover correction model. J Nucl Cardiol. 2012;19:763–74.

    Article  Google Scholar 

  12. Tomiyama Y, Manabe O, Oyama-Manabe N, Naya M, Sugimori H, Hirata K, et al. Quantification of myocardial blood flow with dynamic perfusion 3.0 Tesla MRI: Validation with (15) O-water PET. J Magn Reson Imaging. 2015;42:754–62.

    Article  Google Scholar 

  13. Tsukamoto T, Morita K, Naya M, Katoh C, Inubushi M, Kuge Y, et al. Myocardial flow reserve is influenced by both coronary artery stenosis severity and coronary risk factors in patients with suspected coronary artery disease. Eur J Nucl Med Mol Imaging. 2006;33:1150–6.

    Article  Google Scholar 

  14. Li ST, Tack CJ, Fananapazir L, Goldstein DS. Myocardial perfusion and sympathetic innervation in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2000;35:1867–73.

    Article  CAS  Google Scholar 

  15. Bengel FM, Barthel P, Matsunari I, Schmidt G, Schwaiger M. Kinetics of 123I-MIBG after acute myocardial infarction and reperfusion therapy. J Nucl Med. 1999;40:904–10.

    CAS  PubMed  Google Scholar 

  16. Simoes MV, Barthel P, Matsunari I, Nekolla SG, Schomig A, Schwaiger M, et al. Presence of sympathetically denervated but viable myocardium and its electrophysiologic correlates after early revascularised, acute myocardial infarction. Eur Heart J. 2004;25:551–7.

    Article  Google Scholar 

  17. Matsunari I, Schricke U, Bengel FM, Haase HU, Barthel P, Schmidt G, et al. Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes. Circulation. 2000;101:2579–85.

    Article  CAS  Google Scholar 

  18. Arora R, Ferrick KJ, Nakata T, Kaplan RC, Rozengarten M, Latif F, et al. I-123 MIBG imaging and heart rate variability analysis to predict the need for an implantable cardioverter defibrillator. J Nucl Cardiol. 2003;10:121–31.

    Article  Google Scholar 

  19. Kramer CM, Nicol PD, Rogers WJ, Suzuki MM, Shaffer A, Theobald TM, et al. Reduced sympathetic innervation underlies adjacent noninfarcted region dysfunction during left ventricular remodeling. J Am Coll Cardiol. 1997;30:1079–85.

    Article  CAS  Google Scholar 

  20. Sakata K, Mochizuki M, Yoshida H, Nawada R, Ohbayashi K, Ishikawa J, et al. Cardiac sympathetic dysfunction contributes to left ventricular remodeling after acute myocardial infarction. Eur J Nucl Med. 2000;27:1641–9.

    Article  CAS  Google Scholar 

  21. Mori Y, Manabe O, Naya M, Tomiyama Y, Yoshinaga K, Magota K, et al. Improved spillover correction model to quantify myocardial blood flow by 11C-acetate PET: Comparison with 15O-H 2O PET. Ann Nucl Med. 2015;29:15–20.

    Article  CAS  Google Scholar 

  22. Klein R, Beanlands RS, deKemp RA. Quantification of myocardial blood flow and flow reserve: Technical aspects. J Nucl Cardiol. 2010;17:555–70.

    Article  Google Scholar 

  23. Packard RR, Huang SC, Dahlbom M, Czernin J, Maddahi J. Absolute quantitation of myocardial blood flow in human subjects with or without myocardial ischemia using dynamic flurpiridaz F 18 PET. J Nucl Med. 2014;55:1438–44.

    Article  Google Scholar 

  24. Manabe O, Yoshinaga K, Katoh C, Naya M, deKemp RA, Tamaki N. Repeatability of rest and hyperemic myocardial blood flow measurements with 82Rb dynamic PET. J Nucl Med. 2009;50:68–71.

    Article  Google Scholar 

  25. Siegrist PT, Gaemperli O, Koepfli P, Schepis T, Namdar M, Valenta I, et al. Repeatability of cold pressor test-induced flow increase assessed with H(2)(15)O and PET. J Nucl Med. 2006;47:1420–6.

    PubMed  Google Scholar 

  26. Manabe O, Naya M, Aikawa T, Obara M, Magota K, Kroenke M, et al. PET/CT scanning with 3D acquisition is feasible for quantifying myocardial blood flow when diagnosing coronary artery disease. EJNMMI Res. 2017;7:52.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Shigeo Oomagari, MSc, and Eriko Suzuki for their support to this study.

Disclosure

All authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Manabe MD, PhD.

Additional information

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 823 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiroshima, Y., Manabe, O., Naya, M. et al. Quantification of myocardial blood flow with 11C-hydroxyephedrine dynamic PET: comparison with 15O-H2O PET. J. Nucl. Cardiol. 27, 1118–1125 (2020). https://doi.org/10.1007/s12350-017-1140-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-017-1140-4

Keywords

Navigation