Skip to main content

Advertisement

Log in

Artifacts in Quantitative analysis of myocardial perfusion SPECT, using Cedars-Sinai QPS Software

  • Technologist Corner
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Quantitative analysis of myocardial perfusion Single photon emission computerized tomography (SPECT) images is increasingly applied in modern nuclear cardiology practice, assisting in the interpretation of myocardial perfusion images (MPI). There are different extensively validated state-of-the-art software packages, including QPS (cedars-Sinai), Corridor 4DM (University of Michigan) and Emory cardiac toolbox (Emory university), providing highly accurate and reproducible data. However, these software packages may suffer from potential artifacts related to patient or technical factors. By recognizing the source of such artifacts, the interpreting physician can avoid misinterpretation of MPI study. In this review, we discuss some of technical pitfalls that may occur in Quantitative Perfusion SPECT software (QPS, cedars-Sinai Medical center).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

SPECT:

Single photon emission computerized tomography

MPI:

Myocardial perfusion imaging

LHR:

Lung to heart uptake ratio

TID:

Transient ischemic dilation

LV:

Left ventricle

RV:

Right ventricle

ROI:

Region of interest

LAD:

Left anterior descending coronary artery

LCx:

Left circumflex coronary artery

RCA:

Right coronary artery

References

  1. Underwood SR, Anagnostopoulos C, Cerqueira M, Ell PJ, Flint EJ, Harbinson M, et al. Myocardial perfusion scintigraphy: The evidence. Eur J Nucl Med Mol Imaging 2004;31:261-91.

    Article  CAS  PubMed  Google Scholar 

  2. Faber TL, Chen JI, Garcia EV. SPECT processing, quantification, and display. In: Zaret BL, Beller GA, editors. Clinical nuclear cardiology: State of the art and future directions. 2010. p. 53-71.

    Chapter  Google Scholar 

  3. Cullom SJ, Case JA, Bateman TM. Electrocardiographically gated myocardial perfusion SPECT: Technical principles and quality control considerations. J Nucl Cardiol 1998;5:418-25.

    Article  CAS  PubMed  Google Scholar 

  4. Malek H, Ghaedian T, Yaghoobi N, Rastgou F, Bitarafan-Rajabi A, Firoozabadi H. Focal breast uptake of 99mTc-sestamibi in a man with spindle cell lipoma. J Nucl Cardiol 2012;19(3):618-20.

    Article  CAS  PubMed  Google Scholar 

  5. Berman DS, Kang X, Gransar H, Gerlach J, Friedman JD, Hayes SW, et al. Quantitative assessment of myocardial perfusion abnormality on SPECT myocardial perfusion imaging is more reproducible than expert visual analysis. J Nucl Cardiol 2009;16:45-53.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Burrell S, MacDonald A. Artifacts and pitfalls in myocardial perfusion imaging. J Nucl Med Technol 2006;34:193-211.

    PubMed  Google Scholar 

  7. Russell RR, Wackers FJT. Coronary Artery Disease Detection: Exercise Stress SPECT. In: Zaret BL, Beller GA, editors. Clinical nuclear cardiology: State of the art and future directions. Philadelphia: Elsevier; 2010. p. 225-43.

    Chapter  Google Scholar 

  8. Martinez EE, Horowitz SF, Castello HJ, Castiglioni ML, Carvalho AC, Almeida DR, et al. Lung and myocardial thallium-201 kinetics in resting patients with congestive heart failure: Correlation with pulmonary capillary wedge pressure. Am Heart J 1992;123:427-32.

    Article  CAS  PubMed  Google Scholar 

  9. Germano G, Kavanagh PB, Slomka PJ, Van Kriekinge SD, Pollard G, Berman DS. Quantitation in gated perfusion SPECT imaging: The Cedars-Sinai approach. J Nucl Cardiol 2007;14:433-54.

    Article  PubMed  Google Scholar 

  10. Germano G, Kavanagh PB, Su HT, Mazzanti M, Kiat H, Hachamovitch R, et al. Automatic reorientation of three-dimensional, transaxial myocardial perfusion SPECT images. J Nucl Med 1995;36:1107-14.

    CAS  PubMed  Google Scholar 

  11. Goel S, Bommireddipalli S, DePuey EG. Effect of proton pump inhibitors and H2 antagonists on the stomach wall in 99mTc-sestamibi cardiac imaging. J Nucl Med Technol 2009;37:240-3.

    Article  PubMed  Google Scholar 

  12. Williams KA, Schuster RA, Williams KA Jr, Schneider CM, Pokharna HK. Correct spatial normalization of myocardial perfusion SPECT improves detection of multivessel coronary artery disease. J Nucl Cardiol 2003;10:353-60.

    Article  PubMed  Google Scholar 

  13. Xu Y, Kavanagh P, Fish M, Gerlach J, Ramesh A, Lemley M, et al. Automated quality control for segmentation of myocardial perfusion SPECT. J Nucl Med 2009;50:1418-26.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Slomka PJ, Berman DS, Germano G. Quantification of myocardial perfusion. In: Germano G, Berman DS, editors. Clinical Gated Cardiac SPECT. New York: Wiley; 2006. p. 69-91.

    Chapter  Google Scholar 

  15. Williams KA, Schneider CM. Increased stress right ventricular activity on dual isotope perfusion SPECT: A sign of multivessel and/or left main coronary artery disease. J Am Coll Cardiol 1999;34:420-7.

    Article  CAS  PubMed  Google Scholar 

  16. Hansen C, Goldstein R, Akinboboye O, Berman D, Botvinick E, Churchwell K, et al. Myocardial perfusion and function: Single photon emission computed tomography. J Nucl Cardiol 2007;14:e39-60.

    Article  PubMed  Google Scholar 

  17. Garcia EV. SPECT attenuation correction: An essential tool to realize nuclear cardiology’s manifest destiny. J Nucl Cardiol 2007;14:16-24.

    Article  PubMed  Google Scholar 

  18. Slomka PJ, Nishina H, Berman DS, Akincioglu C, Abidov A, Friedman JD, et al. Automated quantification of myocardial perfusion SPECT using simplified normal limits. J Nucl Cardiol 2005;12:66-77.

    Article  PubMed  Google Scholar 

  19. Nakajima K, Okuda K, Kawano M, Matsuo S, Slomka P, Germano G, et al. The importance of population-specific normal database for quantification of myocardial ischemia: Comparison between Japanese 360 and 180-degree databases and a US database. J Nucl Cardiol 2009;16:422-30.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pereztol-Valdés O, Candell-Riera J, Cs Santana-Boado, Angel J, Aguadé-Bruix S, Castell-Conesa J, et al. Correspondence between left ventricular 17 myocardial segments and coronary arteries. Eur Heart J 2005;26:2637-43.

    Article  PubMed  Google Scholar 

  21. Thomas GS, Kawanishi DT. Situs inversus with dextrocardia in the nuclear lab. Am Heart Hosp. J 2008;6:60-2.

    Article  PubMed  Google Scholar 

Download references

Disclosures

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Yaghoobi MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malek, H., Yaghoobi, N. & Hedayati, R. Artifacts in Quantitative analysis of myocardial perfusion SPECT, using Cedars-Sinai QPS Software. J. Nucl. Cardiol. 24, 534–542 (2017). https://doi.org/10.1007/s12350-016-0726-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-016-0726-6

Keywords

Navigation