Skip to main content
Log in

CZT SPECT study and the imaging of coronary disease: state of art

  • Expert Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

In the last decade, single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) has been characterized by relevant technological innovations, with relevant improvements of both software and hardware settings, having the main goal of establishing systems with higher sensitivity and resolution, and with the potential to allow high quality images despite a more favorable dosimetry. In this regard, the introduction of dedicated cardiac cameras equipped with high-efficiency Cadmium–Zinc–Telluride (CZT) detectors have represented a milestone, allowing the unprecedented reduction of acquisition times. Moreover, the increased spatial resolution and count sensitivity and the possibility to acquire in list mode, like in PET exams, allow the quantification of myocardial blood flow that can potentially change the use of myocardial scintigraphy by CZT camera, in particular in difficult patients. The present article will review the existing evidence on SPECT imaging with dedicated CZT cameras, describing the technical characteristics of these cameras and shedding light on the latest fields of application of CZT imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Miller RJH, Bonow RO, Gransar H, Park R, Slomka PJ, Friedman JD et al (2020) Percutaneous or surgical revascularization is associated with survival benefit in stable coronary artery disease. Eur Hear J Cardiovasc Imaging [Internet] 21(9):961–970. https://doi.org/10.1093/ehjci/jeaa083

    Article  Google Scholar 

  2. Alan R, Miller RJH, Heidi G, Donghee H, Piotr S, Damini D et al (2022) Benefit of early revascularization based on inducible ischemia and left ventricular ejection fraction. J Am Coll Cardiol [Internet]. 80(3):202–215. https://doi.org/10.1016/j.jacc.2022.04.052

    Article  Google Scholar 

  3. Riccardo L, Danilo N, Annette K, Brunella F, Assuero G, Alessia G (2022) Prognostic role of dynamic CZT imaging in CAD patients. JACC Cardiovasc Imaging [Internet] 15(3):540–542. https://doi.org/10.1016/j.jcmg.2021.09.030

    Article  Google Scholar 

  4. Abbott BG, Case JA, Dorbala S, Einstein AJ, Galt JR, Pagnanelli R et al (2018) Contemporary cardiac SPECT imaging—innovations and best practices: an information statement from the American Society of Nuclear Cardiology. J Nucl Cardiol [Internet] 25(5):1847–1860. https://doi.org/10.1007/s12350-018-1348-y

    Article  PubMed  Google Scholar 

  5. Gimelli A, Bottai M, Giorgetti A, Genovesi D, Kusch A, Ripoli A et al (2011) Comparison between ultrafast and standard single-photon emission CT in patients with coronary artery disease. Circ Cardiovasc Imaging [Internet] 4(1):51–58. https://doi.org/10.1161/CIRCIMAGING.110.957399

    Article  PubMed  Google Scholar 

  6. Herzog BA, Buechel RR, Katz R, Brueckner M, Husmann L, Burger IA et al (2010) Nuclear myocardial perfusion imaging with a cadmium-zinc-telluride detector technique: optimized protocol for scan time reduction. J Nucl Med [Internet]. 51(1):46–51

    Article  PubMed  Google Scholar 

  7. Nkoulou R, Pazhenkottil AP, Kuest SM, Ghadri JR, Wolfrum M, Husmann L et al (2011) Semiconductor detectors allow low-dose–low-dose 1-day SPECT myocardial perfusion imaging. J Nucl Med [Internet]. 52(8):1204–1209

    Article  PubMed  Google Scholar 

  8. Panjer M, Dobrolinska M, Wagenaar NRL, Slart RHJA (2022) Diagnostic accuracy of dynamic CZT-SPECT in coronary artery disease. A systematic review and meta-analysis. J Nucl Cardiol [Internet]. 29(4):1686–1697. https://doi.org/10.1007/s12350-021-02721-8

    Article  PubMed  Google Scholar 

  9. Buechel RR, Herzog BA, Husmann L, Burger IA, Pazhenkottil AP, Treyer V et al (2010) Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: first clinical validation. Eur J Nucl Med Mol Imaging 37(4):773–778

    Article  PubMed  Google Scholar 

  10. Imbert L, Marie PY (2016) CZT cameras: a technological jump for myocardial perfusion SPECT. J Nucl Cardiol 23(4):894–896

    Article  PubMed  Google Scholar 

  11. van der Meulen NP, Strobel K, Lima TV (2021) New radionuclides and technological advances in SPECT and PET scanners. Cancers 13

  12. Zhang R, Wang M, Zhou Y, Wang S, Shen Y, Li N et al (2021) Impacts of acquisition and reconstruction parameters on the absolute technetium quantification of the cadmium–zinc–telluride-based SPECT/CT system: a phantom study. EJNMMI Phys [Internet]. https://doi.org/10.1186/s40658-021-00412-4

    Article  PubMed  PubMed Central  Google Scholar 

  13. Imbert L, Poussier S, Franken PR, Songy B, Verger A, Morel O et al (2012) Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med [Internet]. 53(12):1897–1903

    Article  PubMed  Google Scholar 

  14. Desmonts C, Bouthiba MA, Enilorac B, Nganoa C, Agostini D, Aide N. Evaluation of a new multipurpose whole-body CzT-based camera: comparison with a dual-head Anger camera and first clinical images. EJNMMI Phys. 2020;7(1).

  15. Erlandsson K, Kacperski K, van Gramberg D, Hutton BF (2009) Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology. Phys Med Biol [Internet] 54(9):2635. https://doi.org/10.1088/0031-9155/54/9/003

    Article  PubMed  Google Scholar 

  16. Verger A, Imbert L, Yagdigul Y, Fay R, Djaballah W, Rouzet F et al (2014) Factors affecting the myocardial activity acquired during exercise SPECT with a high-sensitivity cardiac CZT camera as compared with conventional Anger camera. Eur J Nucl Med Mol Imaging [Internet] 41(3):522–528. https://doi.org/10.1007/s00259-013-2617-2

    Article  PubMed  Google Scholar 

  17. Zoccarato O, Lizio D, Savi A, Indovina L, Scabbio C, Leva L et al (2016) Comparative analysis of cadmium-zincum-telluride cameras dedicated to myocardial perfusion SPECT: a phantom study. J Nucl Cardiol [Internet] 23(4):885–893. https://doi.org/10.1007/s12350-015-0203-7

    Article  PubMed  Google Scholar 

  18. Ben-Haim S, Kacperski K, Hain S, Van Gramberg D, Hutton BF, Erlandsson K et al (2010) Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera. Eur J Nucl Med Mol Imaging [Internet] 37(9):1710–1721. https://doi.org/10.1007/s00259-010-1441-1

    Article  PubMed  Google Scholar 

  19. Gimelli A, Liga R, Bertasi M, Kusch A, Marzullo P (2021) Head-to-head comparison of a CZT-based all-purpose SPECT camera and a dedicated CZT cardiac device for myocardial perfusion and functional analysis. J Nucl Cardiol [Internet] 28(4):1323–1330. https://doi.org/10.1007/s12350-019-01835-4

    Article  PubMed  Google Scholar 

  20. Mansour N, Nekolla SG, Reyes E, Angelidis G, Georgoulias P, Anagnostopoulos C et al (2022) Multi-center study of inter-rater reproducibility, image quality, and diagnostic accuracy of CZT versus conventional SPECT myocardial perfusion imaging. J Nucl Cardiol 30:528

    Article  PubMed  PubMed Central  Google Scholar 

  21. Giorgetti A, Masci PG, Marras G, Rustamova YK, Gimelli A, Genovesi D et al (2013) Gated SPECT evaluation of left ventricular function using a CZT camera and a fast low-dose clinical protocol: comparison to cardiac magnetic resonance imaging. Eur J Nucl Med Mol Imaging [Internet] 40(12):1869–1875. https://doi.org/10.1007/s00259-013-2505-9

    Article  PubMed  Google Scholar 

  22. Plateau A, Bouvet C, Merlin C, Pereira B, Barres B, Clerfond G et al (2020) Assessment of four different cardiac softwares for evaluation of LVEF with CZT-SPECT vs CMR in 48 patients with recent STEMI. J Nucl Cardiol [Internet] 27(6):2017–2026. https://doi.org/10.1007/s12350-018-01493-y

    Article  PubMed  Google Scholar 

  23. Xu B, Liu L, Abdu FA, Yin G, Mohammed A-Q, Xu S et al (2021) Prognostic value of diastolic dysfunction derived from D-SPECT in coronary artery disease patients with normal ejection fraction [Internet]. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2021.700027

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gimelli A, Liga R, Pasanisi EM, Casagranda M, Marzullo P (2017) Myocardial ischemia in the absence of obstructive coronary lesion: the role of post-stress diastolic dysfunction in detecting early coronary atherosclerosis. J Nucl Cardiol [Internet] 24(5):1542–1550. https://doi.org/10.1007/s12350-016-0456-9

    Article  PubMed  Google Scholar 

  25. Gimelli A, Liga R, Genovesi D, Giorgetti A, Kusch A, Marzullo P (2014) Association between left ventricular regional sympathetic denervation and mechanical dyssynchrony in phase analysis: a cardiac CZT study. Eur J Nucl Med Mol Imaging [Internet] 41(5):946–955. https://doi.org/10.1007/s00259-013-2640-3

    Article  PubMed  Google Scholar 

  26. Kuronuma K, Miller RJH, Otaki Y, Van Kriekinge SD, Diniz MA, Sharir T et al (2021) Prognostic value of phase analysis for predicting adverse cardiac events beyond conventional single-photon emission computed tomography variables: results from the REFINE SPECT registry. Circ Cardiovasc Imaging [Internet]. 14(7):e012386. https://doi.org/10.1161/CIRCIMAGING.120.012386

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gimelli A, Liga R, Clemente A, Marras G, Kusch A, Marzullo P (2020) Left ventricular eccentricity index measured with SPECT myocardial perfusion imaging: an additional parameter of adverse cardiac remodeling. J Nucl Cardiol [Internet] 27(1):71–79. https://doi.org/10.1007/s12350-017-0777-3

    Article  PubMed  Google Scholar 

  28. Murrow J, Esteves F, Galt J, Chen J, Garcia E, Lin J et al (2011) Characterization of mechanical dyssynchrony measured by gated single photon emission computed tomography phase analysis after acute ST-elevation myocardial infarction. J Nucl Cardiol [Internet] 18(5):912–919. https://doi.org/10.1007/s12350-011-9414-8

    Article  PubMed  Google Scholar 

  29. Gimelli A, Liga R, Avogliero F, Coceani M, Marzullo P (2016) Relationships between left ventricular sympathetic innervation and diastolic dysfunction: the role of myocardial innervation/perfusion mismatch. J Nucl Cardiol 1(25):1–9

    Google Scholar 

  30. Gimelli A, Liga R, Menichetti F, Soldati E, Bongiorni M, Marzullo P (2017) Interactions between myocardial sympathetic denervation and left ventricular mechanical dyssynchrony: a CZT analysis. J Nucl Cardiol 14(26):1–10

    Google Scholar 

  31. Gimelli A, Menichetti F, Soldati E, Liga R, Vannozzi A, Marzullo P et al (2016) Relationships between cardiac innervation/perfusion imbalance and ventricular arrhythmias: impact on invasive electrophysiological parameters and ablation procedures. Eur J Nucl Med Mol Imaging [Internet] 43(13):2383–2391. https://doi.org/10.1007/s00259-016-3461-y

    Article  CAS  PubMed  Google Scholar 

  32. Bourque JM, Patel CA, Ali MM, Perez M, Watson DD, Beller GA (2013) Prevalence and predictors of ischemia and outcomes in outpatients with diabetes mellitus referred for single-photon emission computed tomography myocardial perfusion imaging. Circ Cardiovasc Imaging [Internet]. 6(3):466–477

    Article  PubMed  PubMed Central  Google Scholar 

  33. Young LH, Wackers FJT, Chyun DA, Davey JA, Barrett EJ, Taillefer R et al (2009) Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA [Internet]. 301(15):1547–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Muhlestein JB, Lappé DL, Lima JAC, Rosen BD, May HT, Knight S et al (2014) Effect of screening for coronary artery disease using CT angiography on mortality and cardiac events in high-risk patients with diabetes: the FACTOR-64 randomized clinical trial. JAMA [Internet] 312(21):2234–2243. https://doi.org/10.1001/jama.2014.15825

    Article  CAS  PubMed  Google Scholar 

  35. Liga R, Marini C, Coceani M, Filidei E, Schlueter M, Bianchi M et al (2011) Structural abnormalities of the coronary arterial wall—in addition to luminal narrowing—affect myocardial blood flow reserve. J Nucl Med [Internet]. 52(11):1704–1712

    Article  PubMed  Google Scholar 

  36. Gimelli A, Liga R, Clemente A, Pasanisi EM, Favilli B, Marzullo P (2018) Appropriate choice of stress modality in patients undergoing myocardial perfusion scintigraphy with a cardiac camera equipped with solid-state detectors: the role of diabetes mellitus. Eur Heart J Cardiovasc Imaging 19(11):1268–1275

    Article  PubMed  Google Scholar 

  37. Sharir T, Kang X, Shaw LJ, Gransar H, Cohen I, Germano G et al (2006) Prognostic value of poststress left ventricular volume and ejection fraction by gated myocardial perfusion SPECT in women and men: Gender-related differences in normal limits and outcomes. J Nucl Cardiol [Internet] 13(4):495–506. https://doi.org/10.1016/j.nuclcard.2006.03.019

    Article  PubMed  Google Scholar 

  38. Gimelli A, Pugliese NR, Kusch A, Giorgetti A, Marzullo P (2019) Accuracy of cadmium-zinc-telluride imaging in detecting single and multivessel coronary artery disease: Is there any gender difference? Int J Cardiol [Internet] 274:388–393. https://doi.org/10.1016/j.ijcard.2018.09.102

    Article  PubMed  Google Scholar 

  39. Budzyńska A, Osiecki S, Mazurek A, Piszczek S, Dziuk M (2019) Feasibility of myocardial perfusion imaging studies in morbidly obese patients with a cadmium-zinc-telluride cardiac camera. Nucl Med Rev [Internet] 22(1):18–22. https://doi.org/10.5603/NMR.2019.0003

    Article  Google Scholar 

  40. Gimelli A, Bottai M, Giorgetti A, Genovesi D, Filidei E, Marzullo P (2012) Evaluation of ischaemia in obese patients: feasibility and accuracy of a low-dose protocol with a cadmium-zinc telluride camera. Eur J Nucl Med Mol Imaging [Internet] 39(8):1254–1261. https://doi.org/10.1007/s00259-012-2161-5

    Article  CAS  PubMed  Google Scholar 

  41. Klein E, Miller RJH, Sharir T, Einstein AJ, Fish MB, Ruddy TD et al (2022) Automated quantitative analysis of CZT SPECT stratifies cardiovascular risk in the obese population: analysis of the REFINE SPECT registry. J Nucl Cardiol [Internet] 29(2):727–736. https://doi.org/10.1007/s12350-020-02334-7

    Article  PubMed  Google Scholar 

  42. Miller RJH, Han D, Rozanski A, Gransar H, Friedman JD, Hayes S et al (2021) CZT camera systems may provide better risk stratification for low-risk patients. J Nucl Cardiol [Internet] 28(6):2927–2936. https://doi.org/10.1007/s12350-020-02128-x

    Article  PubMed  Google Scholar 

  43. Gimelli A, Pugliese NR, Buechel RR, Coceani M, Clemente A, Kaufmann PA et al (2022) Myocardial perfusion scintigraphy for risk stratification of patients with coronary artery disease: the AMICO registry. Eur Hear J Cardiovasc Imaging [Internet] 23(3):372–380. https://doi.org/10.1093/ehjci/jeaa298

    Article  Google Scholar 

  44. Bailly M, Thibault F, Courtehoux M, Metrard G, Angoulvant D, Ribeiro MJ (2021) Myocardial flow reserve measurement during CZT-SPECT perfusion imaging for coronary artery disease screening: correlation with clinical findings and invasive coronary angiography—the CFR-OR study. Front Med 8(June):1–12

    Google Scholar 

  45. Markiewicz PJ, Thielemans K, Schott JM, Atkinson D, Arridge SR, Hutton BF et al (2016) Rapid processing of PET list-mode data for efficient uncertainty estimation and data analysis. Phys Med Biol [Internet] 61(13):N322. https://doi.org/10.1088/0031-9155/61/13/N322

    Article  CAS  PubMed  Google Scholar 

  46. Shiraishi S, Tsuda N, Sakamoto F, Ogasawara K, Tomiguchi S, Tsujita K et al (2020) Clinical usefulness of quantification of myocardial blood flow and flow reserve using CZT-SPECT for detecting coronary artery disease in patients with normal stress perfusion imaging. J Cardiol [Internet] 75(4):400–409. https://doi.org/10.1016/j.jjcc.2019.09.006

    Article  PubMed  Google Scholar 

  47. Ben-Haim S, Murthy VL, Breault C, Allie R, Sitek A, Roth N et al (2013) Quantification of myocardial perfusion reserve using dynamic SPECT imaging in humans: a feasibility study. J Nucl Med [Internet]. 54(6):873–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Agostini D, Roule V, Nganoa C, Roth N, Baavour R, Parienti JJ et al (2018) First validation of myocardial flow reserve assessed by dynamic 99mTc-sestamibi CZT-SPECT camera: head to head comparison with 15O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study. Eur J Nucl Med Mol Imaging 45(7):1079–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nkoulou R, Fuchs TA, Pazhenkottil AP, Kuest SM, Ghadri JR, Stehli J et al (2016) Absolute myocardial blood flow and flow reserve assessed by gated SPECT with cadmium–zinc–telluride detectors using <sup>99m</sup>Tc-tetrofosmin: head-to-head comparison with <sup>13</sup>N-Ammonia PET. J Nucl Med [Internet]. 57(12):1887–1892

    Article  CAS  PubMed  Google Scholar 

  50. Zavadovsky KV, Vorobyeva DA, Mochula OV, Mochula AV, Maltseva AN, Bayev AE et al (2022) Myocardial blood flow and flow reserve in patients with acute myocardial infarction and obstructive and non-obstructive coronary arteries: CZT SPECT study [Internet]. Front Nuclear Med. https://doi.org/10.3389/fnume.2022.935539

    Article  Google Scholar 

  51. Zampella E, Mannarino T, D’Antonio A, Assante R, Gaudieri V, Buongiorno P et al (2022) Prediction of outcome by 82Rb PET/CT in patients with ischemia and nonobstructive coronary arteries. J Nucl Cardiol [Internet]. https://doi.org/10.1007/s12350-022-03144-9

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhang H, Caobelli F, Che W, Huang Y, Zhang Y, Fan X et al (2023) The prognostic value of CZT SPECT myocardial blood flow (MBF) quantification in patients with ischemia and no obstructive coronary artery disease (INOCA): a pilot study. Eur J Nucl Med Mol Imaging [Internet]. https://doi.org/10.1007/s00259-023-06125-3

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liga R, Vontobel J, Rovai D, Marinelli M, Caselli C, Pietila M et al (2016) Multicentre multi-device hybrid imaging study of coronary artery disease: results from the EValuation of INtegrated Cardiac Imaging for the Detection and Characterization of Ischaemic Heart Disease (EVINCI) hybrid imaging population. Eur Hear J Cardiovasc Imaging [Internet] 17(9):951–960. https://doi.org/10.1093/ehjci/jew038

    Article  Google Scholar 

  54. Neglia D, Liga R, Gimelli A, Podlesnikar T, Cvijić M, Pontone G et al (2023) Use of cardiac imaging in chronic coronary syndromes: the EURECA Imaging registry. Eur Heart J [Internet] 44(2):142–158. https://doi.org/10.1093/eurheartj/ehac640

    Article  PubMed  Google Scholar 

  55. Zavadovsky KV, Mochula AV, Boshchenko AA, Vrublevsky AV, Baev AE, Krylov AL et al (2021) Absolute myocardial blood flows derived by dynamic CZT scan vs invasive fractional flow reserve: correlation and accuracy. J Nucl Cardiol [Internet] 28(1):249–259. https://doi.org/10.1007/s12350-019-01678-z

    Article  PubMed  Google Scholar 

  56. Gimelli A, Liga R, Duce V, Kusch A, Clemente A, Marzullo P (2016) Accuracy of myocardial perfusion imaging in detecting multivessel coronary artery disease: a cardiac CZT study. J Nucl Cardiol 3:24

    Google Scholar 

  57. Gimelli A, Liga R, Magro S, Novo S, Pedrinelli R, Petronio AS et al (2019) Evaluation of left ventricular mass on cadmium-zinc-telluride imaging: validation against cardiac magnetic resonance. J Nucl Cardiol [Internet] 26(3):899–905. https://doi.org/10.1007/s12350-017-1086-6

    Article  PubMed  Google Scholar 

  58. Gimelli A, Liga R, Bottai M, Pasanisi EM, Giorgetti A, Fucci S et al (2015) Diastolic dysfunction assessed by ultra-fast cadmium–zinc–telluride cardiac imaging: impact on the evaluation of ischaemia. Eur Hear J Cardiovasc Imaging [Internet] 16(1):68–73. https://doi.org/10.1093/ehjci/jeu166

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessia Gimelli.

Ethics declarations

Conflict of interest

Authors MS, RL and AG declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sredojević, M., Liga, R. & Gimelli, A. CZT SPECT study and the imaging of coronary disease: state of art. Clin Transl Imaging 11, 339–349 (2023). https://doi.org/10.1007/s40336-023-00562-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-023-00562-8

Keywords

Navigation