Skip to main content
Log in

Mathematical Modelling of HIV/AIDS Treatment Using Caputo–Fabrizio Fractional Differential Systems

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The focus of this study lies in developing and evaluating a Caputo–Fabrizio fractional derivative model that encapsulates the dynamics of the worldwide HIV/AIDS epidemic while integrating an antiretroviral therapy component. The methodology involves employing iterative techniques alongside the fixed-point theorem to establish the existence and uniqueness solutions of the model. In particular, the model identifies equilibrium points corresponding to disease outbreaks and disease-free scenarios. Additionally, it showcases the local asymptotic stability of the disease-free equilibrium point and outlines the criteria for the presence of the endemic equilibrium point. The findings verify that as the fractional order decreases, the disease-free equilibrium point becomes more stable. To demonstrate the impact of altering the fractional order and to bolster the theoretical finding, numerical simulations are conducted over the fractional order range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ghosh, I., et al.: A simple SI-type model for HIV/AIDS with media and self-imposed psychological fear. Math. Biosci. 306, 160–169 (2018)

    Article  MathSciNet  Google Scholar 

  2. Zhai, X., et al.: Dynamics of an HIV/AIDS transmission model with protection awareness and fluctuations. Chaos Solitons Fract. 169, 113224 (2023)

    Article  MathSciNet  Google Scholar 

  3. Atangana, A., Gómez-Aguilar, J.F.: Numerical approximation of Riemann–Liouville definition of fractional derivative: from Riemann–Liouville to Atangana–Baleanu. Numer. Methods Part. Differ. Equ. 34(5), 1502–1523 (2018)

    Article  MathSciNet  Google Scholar 

  4. Baleanu, D., et al.: Dynamical behaviours and stability analysis of a generalized fractional model with a real case study. J. Adv. Res. 48, 157–173 (2023)

    Article  Google Scholar 

  5. Baleanu, D., et al.: A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach. Chaos Solitons Fract. 167, 113078 (2023)

    Article  MathSciNet  Google Scholar 

  6. Saha, S., Samanta, G.P.: Modelling and optimal control of HIV/AIDS prevention through PrEP and limited treatment. Phys. A Stat. Mech. Appl. 516, 280–307 (2019)

    Article  MathSciNet  Google Scholar 

  7. Samanta, G.P.: Permanence and extinction of a nonautonomous HIV/AIDS epidemic model with distributed time delay. Nonlinear Anal. Real World Appl. 12(2), 1163–1177 (2011)

    Article  MathSciNet  Google Scholar 

  8. Sharma, S., Samanta, G.P.: Dynamical behaviour of an HIV/AIDS epidemic model. Differ. Equ. Dyn. Syst. 22(4), 369–395 (2014)

    Article  MathSciNet  Google Scholar 

  9. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  10. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model (2016). arXiv:1602.03408

  11. Ullah, S., Khan, M.A., Farooq, M.: A fractional model for the dynamics of TB virus. Chaos Solitons Fract. 116, 63–71 (2018)

    Article  MathSciNet  Google Scholar 

  12. Khan, A., Gómez-Aguilar, J.F., Khan, T.S., Khan, H.: Stability analysis and numerical solutions of fractional order HIV/AIDS model. Chaos Solitons Fract. 122, 119–128 (2019)

    Article  MathSciNet  Google Scholar 

  13. Lichae, B.H., Biazar, J., Ayati, Z.: The fractional differential model of HIV-1 infection of CD4+ T-cells with description of the effect of antiviral drug treatment. Comput. Math. Methods Med. 6, 66 (2019)

    MathSciNet  Google Scholar 

  14. Moore, E.J., Sirisubtawee, S., Koonprasert, S.: A Caputo–Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment. Adv. Differ. Equ. 2019(1), 1–20 (2019)

    Article  MathSciNet  Google Scholar 

  15. Ullah, S., et al.: The dynamics Of HIV/AIDS model with fractal–fractional Caputo derivative. Fractals 31(02), 2340015 (2023)

    Article  Google Scholar 

  16. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  17. Hilfer, R, (ed.): Applications of Fractional Calculus in Physics. World Scientific (2000)

  18. Raghavendran, P., et al.: Solving fractional integro-differential equations by Aboodh transform. J. Math. Comput. Sci. 32, 229–240 (2023)

    Article  Google Scholar 

  19. Gunasekar, T., Raghavendran, P., Santra, S.S., Sajid, M.: Analyzing existence, uniqueness, and stability of neutral fractional Volterra–Fredholm integro-differential equations. J. Math. Comput. SCI-JM 33(4), 390–407 (2024)

    Article  Google Scholar 

  20. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59(5), 1586–1593 (2010)

    Article  MathSciNet  Google Scholar 

  21. Gunasekar, A., et al.: Application of Laplace transform to solve fractional integro-differential equations. J. Math. Comput. Sci. 33(3), 225–237 (2024)

    Article  Google Scholar 

  22. Gunasekar, T., Raghavendran, P.: The Mohand transform approach to fractional integro-differential equations. J. Comput. Anal. Appl. 33(1), 358–371 (2024)

    Google Scholar 

  23. Manimaran, S., et al.: Controllability of impulsive neutral functional integrodifferential inclusions with an infinite delay. Glob. J. Pure Appl. Math. 10(6), 817–834 (2014)

    Google Scholar 

  24. Samuel, F.P., Gunasekar, T., Arjunan, M.M.: Controllability results for second order impulsive neutral functional integrodifferential inclusions with infinite delay. Ital. J. Pure Appl. Math 31, 319–332 (2013)

    MathSciNet  Google Scholar 

  25. Khan, H., Alam, K., Gulzar, H., Etemad, S., Rezapour, S.: A case study of fractal–fractional tuberculosis model in China: existence and stability theories along with numerical simulations. Math. Comput. Simul. 198, 455–473 (2022)

    Article  MathSciNet  Google Scholar 

  26. Furati, K.M., Kassim, M.D.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64(6), 1616–1626 (2012)

    Article  MathSciNet  Google Scholar 

  27. Zafar, Z.U.A., et al.: Fractional-order dynamics of human papillomavirus. Results Phys. 34, 105281 (2022)

    Article  Google Scholar 

  28. Ullah, I., Ahmad, S., Al-Mdallal, Q., Khan, Z.A., Khan, H., Khan, A.: Stability analysis of a dynamical model of tuberculosis with incomplete treatment. Adv. Differ. Equ. 2020(1), 1–14 (2020)

    Article  MathSciNet  Google Scholar 

  29. Zafar, Z.U.A., et al.: Analysis and numerical simulation of tuberculosis model using different fractional derivatives. Chaos Solitons Fract. 160, 112–202 (2022)

    Article  MathSciNet  Google Scholar 

  30. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

  31. Poovarasan, R., et al.: The existence, uniqueness, and stability analyses of the generalized Caputo-type fractional boundary value problems. AIMS Math. 8(7), 16757–16772 (2023)

    Article  MathSciNet  Google Scholar 

  32. Poovarasan, R., et al.: Some novel analyses of the Caputo-type singular three-point fractional boundary value problems. J. Anal. 66, 1–22 (2023)

    MathSciNet  Google Scholar 

  33. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam (1998)

    Google Scholar 

  34. Kumar, P., Govindaraj, V., Murillo-Arcila, M.: The existence, uniqueness, and stability results for a nonlinear coupled system using Caputo fractional derivatives. Bound. Value Probl. 2023(1), 75 (2023)

    Article  MathSciNet  Google Scholar 

  35. Kumar, S., et al.: Numerical investigations on COVID-19 model through singular and non-singular fractional operators. Numer. Methods Part. Differ. Equ. 6, 66 (2020)

    Google Scholar 

  36. Kumar, S., et al.: A study on fractional host-parasitoid population dynamical model to describe insect species. Numer. Methods Part. Differ. Equ. 37(2), 1673–1692 (2021)

    Article  MathSciNet  Google Scholar 

  37. Khan, M.A., Ullah, S., Kumar, S.: A robust study on 2019-nCOV outbreaks through non-singular derivative. Eur. Phys. J. Plus 136, 1–20 (2021)

    Article  Google Scholar 

  38. Kumar, S., et al.: A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials. Numer. Methods Part. Differ. Equ. 37(2), 1250–1268 (2021)

    Article  MathSciNet  Google Scholar 

  39. Mohammadi, H., et al.: A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fract. 144, 110–668 (2021)

    Article  MathSciNet  Google Scholar 

  40. Kumar, S., et al.: Chaotic behaviour of fractional predator–prey dynamical system. Chaos Solitons Fractals 135, 109811 (2020)

    Article  MathSciNet  Google Scholar 

  41. Gunasekar, T., Thiravidarani, J., Mahdal, M., Raghavendran, P., Venkatesan, A., Elangovan, M.: Study of non-linear impulsive neutral fuzzy delay differential equations with non-local conditions. Mathematics 11(17), 3734 (2023)

    Article  Google Scholar 

  42. Gunasekar, T., et al.: Symmetry analyses of epidemiological model for Monkeypox virus with Atangana–Baleanu fractional derivative. Symmetry 15(8), 1605 (2023)

    Article  Google Scholar 

  43. Govindaraj, V., George, R.K.: Controllability of fractional dynamical systems: a functional analytic approach. Math. Control Related Fields 7(4), 537 (2017)

    Article  MathSciNet  Google Scholar 

  44. Govindaraj, V., George, R.K.: Functional approach to observability and controllability of linear fractional dynamical systems. J. Dyn. Syst. Geom. Theor. 15(2), 111–129 (2017)

    MathSciNet  Google Scholar 

  45. Atangana, A., Gómez-Aguilar, J.F.: A new derivative with normal distribution kernel: theory, methods and applications. Phys. A Stat. Mech. Appl. 476, 1–14 (2017)

    Article  MathSciNet  Google Scholar 

  46. Ali Dokuyucu, M., et al.: Cancer treatment model with the Caputo–Fabrizio fractional derivative. Eur. Phys. J. Plus 133, 1–6 (2018)

    Article  Google Scholar 

  47. Zafar, Z.U.A., et al.: Numerical simulation and analysis of the stochastic HIV/AIDS model in fractional order. Results Phys. 53, 106995 (2023)

    Article  Google Scholar 

  48. Zafar, Z.U.A., et al.: Impact of public health awareness programs on COVID-19 dynamics: a fractional modeling approach. Fractals 6, 66 (2022)

    Google Scholar 

  49. Khajanchi, S., et al.: Mathematical modeling of the COVID-19 pandemic with intervention strategies. Results Phys. 25, 104285 (2021)

    Article  Google Scholar 

  50. Rai, R.K., et al.: Impact of social media advertisements on the transmission dynamics of COVID-19 pandemic in India. J. Appl. Math. Comput. 66, 1–26 (2022)

    MathSciNet  Google Scholar 

  51. Samui, P., Mondal, J., Khajanchi, S.: A mathematical model for COVID-19 transmission dynamics with a case study of India. Chaos Solitons Fract. 140, 110173 (2020)

    Article  MathSciNet  Google Scholar 

  52. Khajanchi, S., Sarkar, K.: Forecasting the daily and cumulative number of cases for the COVID-19 pandemic in India. Chaos Interdiscip. J. Nonlinear Sci. 30(7), 66 (2020)

    Article  MathSciNet  Google Scholar 

  53. Sarkar, K., Khajanchi, S., Nieto, J.J.: Modeling and forecasting the COVID-19 pandemic in India. Chaos Solitons Fract. 139, 110049 (2020)

    Article  MathSciNet  Google Scholar 

  54. Khajanchi, S., Sarkar, K., Mondal, J.: Dynamics of the COVID-19 pandemic in India. arXiv preprint arXiv:2005.06286 (2020)

  55. Mondal, J., Khajanchi, S.: Mathematical modeling and optimal intervention strategies of the COVID-19 outbreak. Nonlinear Dyn. 109(1), 177–202 (2022)

    Article  Google Scholar 

  56. Tiwari, P.K., et al.: Dynamics of coronavirus pandemic: effects of community awareness and global information campaigns. Eur. Phys. J. Plus 136(10), 994 (2021)

    Article  Google Scholar 

  57. Khajanchi, S., Sarkar, K., Banerjee, S.: Modeling the dynamics of COVID-19 pandemic with implementation of intervention strategies. Eur. Phys. J. Plus 137(1), 129 (2022)

    Article  Google Scholar 

  58. Mondal, J., Khajanchi, S.: Mathematical modeling and optimal intervention strategies of the COVID-19 outbreak. Nonlinear Dyn. 109(1), 177–202 (2022)

    Article  Google Scholar 

  59. Chakraborty, A., Veeresha, P., Ciancio, A., Baskonus, H.M., Alsulami, M.: The effect of climate change on the dynamics of a modified surface energy balance-mass balance model of Cryosphere under the frame of a non-local operator. Results Phys. 54, 107031 (2023)

    Article  Google Scholar 

  60. Chakraborty, A., Veeresha, P.: Effects of global warming, time delay and chaos control on the dynamics of a chaotic atmospheric propagation model within the frame of Caputo fractional operator. Commun. Nonlinear Sci. Numer. Simul. 128, 107657 (2024)

    Article  MathSciNet  Google Scholar 

  61. Ilhan, E., Veeresha, P., Baskonus, H.M.: Fractional approach for a mathematical model of atmospheric dynamics of CO\(_2\) gas with an efficient method. Chaos Solitons Fract. 152, 111347 (2021)

    Article  Google Scholar 

  62. Saha, S., Das, M., Samanta, G.: Analysis of an SIRS model in two-patch environment in presence of optimal dispersal strategy. Axioms 13(2), 94 (2024)

    Article  Google Scholar 

  63. Meghadri, D., Samanta, G.P.: Optimal control of a fractional order epidemic model with carriers. Int. J. Dyn. Control 10(2), 598–619 (2022)

    Article  MathSciNet  Google Scholar 

  64. Hunter, J.K., Nachtergaele, B.: Applied Analysis. World Scientific Publishing Company, Singapore (2001)

    Book  Google Scholar 

  65. Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Progr. Fract. Differ. Appl 1(2), 87–92 (2015)

    Google Scholar 

  66. Merdan, M.: Solutions of time-fractional reaction–diffusion equation with modified Riemann–Liouville derivative. Int. J. Phys. Sci. 7(15), 2317–2326 (2012)

    Google Scholar 

  67. Silva, C.J., Torres, D.F.M.: A SICA compartmental model in epidemiology with application to HIV/AIDS in Cape Verde. Ecol. Complex. 30, 70–75 (2017)

    Article  Google Scholar 

  68. Mbitila, A.S., Tchuenche, JM.: HIV/AIDS Model with Early Detection and Treatment. International Scholarly Research Notices (2012)

  69. Ali, A., et al.: Modeling and analysis of the dynamics of novel coronavirus (COVID-19) with Caputo fractional derivative. Results Phys. 20, 103669 (2021)

    Article  Google Scholar 

  70. Kreyszig, E.: Introductory Functional Analysis with Applications, vol. 17. Wiley, New York (1991)

    Google Scholar 

Download references

Acknowledgements

The authors Kamal Shah and Thabet Abdeljawad would like to thank Prince Sultan University for the support through the TAS research lab.

Author information

Authors and Affiliations

Authors

Contributions

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Corresponding authors

Correspondence to T. Gunasekar, A. Kouidere or Thabet Abdeljawad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, S., Gunasekar, T., Kouidere, A. et al. Mathematical Modelling of HIV/AIDS Treatment Using Caputo–Fabrizio Fractional Differential Systems. Qual. Theory Dyn. Syst. 23, 149 (2024). https://doi.org/10.1007/s12346-024-01005-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-01005-z

Keywords

Navigation