Skip to main content
Log in

A Formal KAM Theorem for Hamiltonian Systems and Its Application to Hyperbolic Lower Dimensional Invariant Tori

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper we reformulate a formal KAM theorem for Hamiltonian systems with parameters under Bruno-Rüssmann condition. The proof is based on KAM iteration and the key is to adjust the parameters for small divisors after KAM iteration instead of in each KAM step. By this formal KAM theorem we can follow some well known KAM-type results for hyperbolic tori. Moreover, it can also be applied to the persistence of invariant tori with prescribed frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Proof of a theorem of A. N. Kolmogorov on the persistence of quasi-perodic motions under small perturbations of the Hamiltonian. Russ. Math. Surv. 18(5), 9–36 (1963)

    Article  Google Scholar 

  2. Bounemoura, A., Fischler, S.: The classical KAM theorem for Hamiltonian systems via rational approximations. Regul. Chaotic Dyn. 19(2), 251–265 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bourgain, J.: On Melnikov’s persistency problem. Math. Res. Lett. 4(4), 445–458 (1997)

    Article  MathSciNet  Google Scholar 

  4. Eliasson, L.H., Fayad, B., Krikorian, R.: KAM tori near an analytic elliptic fixed point. Regul. Chaotic Dyn. 18(6), 801–831 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  5. Gallavotti, G., Gentile, G.: Hyperbolic low-dimensional invariant tori and summations of divergent series. Commun. Math. Phys. 227, 421–460 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  6. Gentile, G.: Degenerate lower-dimensional tori under the Bryuno condition. Ergodic Theory Dyn. Syst. 27(2), 427–457 (2007)

    Article  MathSciNet  Google Scholar 

  7. Graff, S.M.: On the conservation of hyperbolic invariant tori for Hamiltonian systems. J. Differ. Equ. 15(1), 1–69 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  8. Koch, H., Kocić, S.: A renormalization approach to lower-dimensional tori with Brjuno frequency vectors. J. Differ. Equ. 249(8), 1986–2004 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  9. Koch, H., Kocić, S.: A renormalization group approach to quasiperiodic motion with Brjuno frequencies. Ergodic Theory Dyn. Syst. 30(4), 1131–1146 (2010)

    Article  MathSciNet  Google Scholar 

  10. Kolmogorov, A.N.: On conservation of conditionally perodic motions for a small change in Hamilton’s function. Dokl. Akad. Nauk SSSR 98(4), 527–530 (1954)

    MathSciNet  Google Scholar 

  11. Li, Y., Yi, Y.: Persistence of hyperbolic tori in Hamiltonian systems. J. Differ. Equ. 208(2), 344–387 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. Melnikov, V.K.: On certain cases of conservation of almost periodic motions with a small change of the Hamiltonian function. Dokl. Akad. Nauk SSSR 165, 1245–1248 (1965)

    MathSciNet  Google Scholar 

  13. Melnikov, V.K.: A certain family of conditionally periodic solutions of a Hamiltonian system. Dokl. Akad. Nauk SSSR 181, 546–549 (1968)

    MathSciNet  Google Scholar 

  14. Moser, J.: On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Gött. Math. Phys. Kl. II(1962), 1–20 (1962)

    MathSciNet  Google Scholar 

  15. Moser, J.: Convergent series expansions for quasi-periodic motions. Math. Ann. 169, 136–176 (1967)

    Article  MathSciNet  Google Scholar 

  16. Pöschel, J.: A lecture on the classical KAM theorem. Proc. Sympos. Pure Math. 69, 707–732 (2001)

    Article  MathSciNet  Google Scholar 

  17. Pöschel, J.: On elliptic lower-dimensional tori in Hamiltonian systems. Math. Z. 202(4), 559–608 (1989)

    Article  MathSciNet  Google Scholar 

  18. Rüssmann, H.: On the one-dimensional Schrödinger equation with a quasi-periodic potential. Ann. N. Y. Acad. Sci. 357, 90–107 (1980)

    Article  ADS  Google Scholar 

  19. Rüssmann, H.: Invariant tori in non-degenerate nearly integrable Hamiltonian systems. Regul. Chaotic Dyn. 6(2), 119–204 (2001)

    Article  MathSciNet  Google Scholar 

  20. Rüssmann, H.: Stability of elliptic fixed points of analytic area-preserving mappings under the Bruno condition. Ergodic Theory Dyn. Syst. 22(5), 1551–1573 (2002)

    Article  MathSciNet  Google Scholar 

  21. Servyuk, M.B.: KAM-stable Hamiltonians. J. Dyn. Control Syst. 1(3), 351–366 (1995)

    Article  MathSciNet  Google Scholar 

  22. Sevryuk, M.B.: Partial preservation of frequencies in KAM theory. Nonlinearity 19(5), 1099–1140 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. Xu, J., You, J., Qiu, Q.: Invariant tori of nearly integrable Hamiltonian systems with degeneracy. Math. Z. 226, 375–386 (1997)

    Article  MathSciNet  Google Scholar 

  24. Xu, J., Lu, X.: General KAM theorems and their applications to invariant tori with prescribed frequencies. Regul. Chaotic Dyn. 21(1), 107–125 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. Xu, J.: Persistence of lower dimensional degenerate invariant tori with prescribed frequencies in Hamiltonian systems with small parameter. Nonlinearity 34, 8192–8247 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  26. Yoccoz, J.C.: Analytic Linearization of Circle Diffeomorphisms, Dynamical Systems and Small Divisors (Cetraro 1998). Lecture Notes in Math. 1784, pp. 125–173. Springer, Berlin (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.X. suggested the study of this problem and Qi Li gave the details of the proof. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Junxiang Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 5.1

Let \(\lambda _1,\lambda _2,\cdots \lambda _{2m}\) be the eigenvalues of matrix \(Q_0\) with \(|\textrm{Re} \lambda _i|\ge \delta _0>0\), for any \(i=1,2,\cdots 2m\). Set \(g(x)\in {\mathcal {A}}\), where \({\mathcal {A}}\) denotes the analytic function space defined on the strip \(T_s\), among which \(T_s=\{x\in {\mathbb {C}}^n/2\pi {\mathbb {Z}}^n: |\textrm{Im}x|_{\infty }\le s \}\). There exists a sufficiently small \(\epsilon _0>0\), such that for \({\hat{Q}}(x)\in {\mathcal {A}}\), if \(||{\hat{Q}}||_{T_s}\le \epsilon _0\), then the equation

$$\begin{aligned} \big \langle \omega ,\partial _{x}f(x)\big \rangle -(Q_0+{\hat{Q}}(x))f(x)=g(x) \end{aligned}$$

has a unique solution \(f(x)\in {\mathcal {A}}\), with

$$\begin{aligned} ||f||_{ T_{s}}\le c||g||_{ T_{s}}. \end{aligned}$$

Proof

Let \({\mathcal {L}}{{f}}=\big \langle \omega ,\partial _{x}f(x)\big \rangle -Q_0f(x),\ f \in {\mathcal {A}} \). Then \({\mathcal {L}}:{\mathcal {A}}\rightarrow {\mathcal {A}}\) is a linear operator. By assumption, the matrix \(Q_0\) is hyperbolic, the operator \({\mathcal {L}}\) has a bounded inverse with \(\Vert {\mathcal {L}}^{-1}\Vert \le \frac{1}{\delta _0}\). By Banach fixed point theorem, it is easy to follow this lemma and we omit the details. \(\square \)

Let \({\bar{\Xi }}\) be an approximation function satisfying (2.2) and (2.3). Let

$$\begin{aligned} {\bar{\Gamma }}(\sigma )=\sup \limits _{t\ge 0}{\bar{\Xi }}(t)e^{-\sigma t}. \end{aligned}$$

Define

$$\begin{aligned} {\bar{\Delta }}(\sigma )={ \inf }\mathop {\Pi }\limits _{j=0}^{\infty }{\bar{\Gamma }}(\sigma _j)^{\kappa _j}, \ \ \kappa _j=\frac{\kappa -1}{\kappa ^{j+1}} \ \text{ with } \ \kappa =\frac{4}{3}, \end{aligned}$$
(5.1)

where the infimum is taken for sequences \(\{\sigma _j\}\) satisfying

$$\begin{aligned} \sigma _0\ge \sigma _1\ge \sigma _2\ge \cdots >0 \ \ \text{ and } \ \ \sigma _0+\sigma _1+\sigma _2+\cdots \le \sigma . \end{aligned}$$

We first state a lemma which is proved in [17]. We also refer it to [18].

Lemma 5.2

(Lemma A.1 [17]) For all \(\sigma >0\), the function \({\bar{\Delta }}(\sigma )\) is finite. More precisely, if

$$\begin{aligned} \frac{1}{\textrm{log}\kappa }\int _T^{\infty }\frac{\textrm{log}\bigl ({\bar{\Xi }}(t)\bigr )}{t^2}\ dt\le \sigma , \end{aligned}$$

then

$$\begin{aligned} {\bar{\Delta }}(\sigma )\le e^{(\kappa -1)\sigma T}. \end{aligned}$$

Let \(\Xi \) be an approximation function satisfying (2.2) and (2.3). Let \(\ell \ge 0\) and

$$\begin{aligned} \Gamma (\sigma )=\sup \limits _{t\ge 0}(1+t)^{\ell +2}\Xi ^{\ell +2}(t)e^{-\sigma t}. \end{aligned}$$

Define

$$\begin{aligned} \Delta (\sigma )={ \inf }\mathop {\Pi }\limits _{j=0}^{\infty }\Gamma (\sigma _j)^{\kappa _j}, \ \ \kappa _j=\frac{\kappa -1}{\kappa ^{j+1}} \ \text{ with } \ \kappa =\frac{4}{3}, \end{aligned}$$
(5.2)

where the infimum is taken for sequences \(\{\sigma _j\}\) satisfying

$$\begin{aligned} \sigma _0\ge \sigma _1\ge \sigma _2\ge \cdots >0 \ \ \text{ and } \ \ \sigma _0+\sigma _1+\sigma _2+\cdots \le \sigma . \end{aligned}$$

Since \(\Xi \) is an approximation function, it is easy to check that \((1+t)^{\ell +2}\Xi ^{\ell +2}(t)\) is also an approximation function. By Lemma 5.2 with \({\bar{\Xi }}(t)=(1+t)^{\ell +2}\Xi ^{\ell +2}(t), \) it follows that for all \(\sigma >0\), \(\Delta (\sigma )\) is finite.

Lemma 5.3

The supremum in the definition of \(\Gamma (\sigma )\) can be attained. Moreover, the infimum in the definition of \(\Delta (\sigma )\) can also be attained. More precisely, for any \(\sigma >0\), there exists a sequence \(\sigma _0^*\ge \sigma _1^*\ge \sigma _2^*\ge \cdots >0\) such that \(\sum \nolimits _{i=0}^{\infty }\sigma _i^*=\sigma \) and

$$\begin{aligned} \Delta (\sigma )=\mathop {\Pi }\limits _{j=0}^{\infty }\Gamma (\sigma _j^*)^{\kappa _j}. \end{aligned}$$

Proof

This lemma is actually proved in [17, 18]. However, because of small divisor conditions, our definitions of \(\Gamma \) and \(\Delta \) are different. For the convenience of readers, we give the proof, but the idea is the same as in [17, 18].

At first, by assumption (2.2) we have \(\frac{{\textrm{log}}(\Xi (t))}{t}\rightarrow 0, \ 0\le t\rightarrow \infty \). Then it is easy to see that the supremum \(\Gamma (\sigma )=\sup \nolimits _{t\ge 0}(1+t)^{\ell +2}\Xi ^{\ell +2}(t)e^{-\sigma t}\) is attained and finite.

Note that

$$\begin{aligned} \Delta (\sigma )={ \inf }\mathop {\Pi }\limits _{j=0}^{\infty }\Gamma (\sigma _j)^{\kappa _j}, \ \ \kappa _j=\frac{\kappa -1}{\kappa ^{j+1}} \ \text{ with } \ \kappa =\frac{4}{3}. \end{aligned}$$

Let

$$\begin{aligned} f({{\tilde{\sigma }}})=\mathop {\Pi }\limits _{j=0}^{\infty }\Gamma (\sigma _j)^{\kappa _j}, \end{aligned}$$

where

$$\begin{aligned} {{\tilde{\sigma }}}=(\sigma _0, \sigma _1, \sigma _2, \cdots \sigma _n, \cdots )\in l^1. \end{aligned}$$

We consider \(f({{\tilde{\sigma }}})\) as a functional on \( l^1\).

Note that the weakly convergence in \(l^1\) implies the pointwise convergence. Then \(f({{\tilde{\sigma }}})\) is weakly lower semi-continuous on the set:

$$\begin{aligned} A= \left\{ (\sigma _0, \sigma _1, \sigma _2, \cdots \sigma _n, \cdots )\ | \ \sum _{j\ge 0}\sigma _j\le \sigma , \sigma _j>0, \forall j\ge 0 \right\} . \end{aligned}$$

In fact, let \({{\tilde{\sigma }}}_k\rightharpoonup {{\tilde{\sigma }}}\), that is,

$$\begin{aligned} \sigma _{kj}\rightarrow \sigma _j,\ k\rightarrow \infty , \ \forall j=0, 1,2 \cdots . \end{aligned}$$

Moreover,

$$\begin{aligned} \varliminf _{k\rightarrow \infty }\Gamma (\sigma _{kj})\ge \varliminf _{k\rightarrow \infty } (1+t)^{\ell +2}\Xi ^{\ell +2}(t)e^{-\sigma _{kj} t}=(1+t)^{\ell +2}\Xi ^{\ell +2}(t)e^{-\sigma _j t}, \ \forall t\ge 0, \end{aligned}$$

thus,

$$\begin{aligned} \varliminf _{k\rightarrow \infty }\Gamma (\sigma _{kj})\ge \sup \limits _{t\ge 0}(1+t)^{\ell +2}\Xi ^{\ell +2}(t)e^{-\sigma _j t}=\Gamma (\sigma _{j}). \end{aligned}$$

Then

$$\begin{aligned} \varliminf _{k\rightarrow \infty }f({{\tilde{\sigma }}}_{k})\ge \prod _{j=0}^{\infty }\varliminf _{k\rightarrow \infty }\Gamma (\sigma _{kj})\ge \prod _{j=0}^{\infty }\Gamma (\sigma _{j})=f({{\tilde{\sigma }}}). \end{aligned}$$

Also note that if \(\sigma _j\rightarrow 0\), we have \(f({{\tilde{\sigma }}})\rightarrow +\infty .\) And A is a bounded set of \(l^1\). Then the infimum \(\inf _{{{\tilde{\sigma }}}\in A}f({{\tilde{\sigma }}})\) can be attained. Thus, there exists a sequence \(\sigma _0^*\ge \sigma _1^*\ge \sigma _2^*\ge \cdots >0\) such that \(\sum \nolimits _{i=0}^{\infty }\sigma _i^*\le \sigma \) and

$$\begin{aligned} \Delta (\sigma )=f({{\tilde{\sigma }}}_*) =\mathop {\Pi }\limits _{j=0}^{\infty }\Gamma \left( \sigma _j^* \right) ^{\kappa _j}, \end{aligned}$$

where \({{\tilde{\sigma }}}_*=(\sigma _0^*, \sigma _1^*, \sigma _2^*, \cdots ).\) Now we can prove \(\sum \nolimits _{i=0}^{\infty }\sigma _i^*=\sigma \) by contradiction. If not so, that is, \(\sum \nolimits _{i=0}^{\infty }\sigma _i^*<\sigma ,\) then there exists a sequence \(\{\sigma _i'\}\) such that \(\sigma _i^*<\sigma _i', \ \forall i\ge 0\), and \(\sum \nolimits _{i=0}^{\infty }\sigma _i'=\sigma .\) Obviously, \(f({{\tilde{\sigma }}}')<f({{\tilde{\sigma }}}_*)\), which is a contradiction. Thus, \(\sum \nolimits _{i=0}^{\infty }\sigma _i^*=\sigma \).

In addition, the infimum is not only attainable, but also finite. This conclusion can follow from Lemma 5.2. \(\square \)

If the approximation function \(\Xi (t)\) is absolutely continuous and for almost every \(t\ge 0\), assume that

$$\begin{aligned} \frac{d}{dt}\textrm{log}\bigl ( \Xi (t)\bigr )\ge \frac{1}{1+t}, \end{aligned}$$
(5.3)

then \(\Xi (t)\) is called a sufficiently increasing function. Without saying it directly, we assume that all approximation functions in this paper are sufficiently increasing.

Lemma 5.4

If the approximation function \(\Xi (t)\) is sufficiently increasing, then it follows

$$\begin{aligned} \Gamma _{\ell +1}(\sigma )\le \frac{\sigma }{2({\ell +1})} \Gamma _{{\ell +2}}(\sigma ), \ \ \ell \ge 0, \end{aligned}$$

where \(\Gamma _{\ell +1}(\sigma )=\sup \limits _{t\ge 0}(1+t)^{\ell +1}\Xi ^{\ell +1}(t)e^{-\sigma t}\).

Proof

Assume that the approximation function \(\Xi (t)\) is sufficiently increasing, if \(\sigma (1+t)\le 2({\ell +1})\), we can get

$$\begin{aligned} \frac{d}{dt}\textrm{log}\bigl ((1+t)^{\ell +1}\Xi ^{\ell +1}(t)-\sigma t\bigr )\ge \frac{d}{dt}\textrm{log}\bigl ((1+t)^{\ell +1}\Xi ^{\ell +1}(t)\bigr )-\frac{2({\ell +1})}{1+t}\ge 0, \end{aligned}$$

then \((1+t)^{\ell +1}\Xi ^{\ell +1}(t) e^{-\sigma t}\) can get the supremum at some point \(t_*\) and the inequality \(\sigma (1+t_*)\ge 2({\ell +1})\) holds true. Thus, it follows

$$\begin{aligned} \Gamma _{\ell +1}(\sigma )= & {} (1+t_*)^{\ell +1}\Xi ^{\ell +1}(t_*)e^{-\sigma t_*}\le \frac{\sigma }{2({\ell +1})} (1+t_*)^{{\ell +2}}\Xi ^{\ell +1}(t_*)e^{-\sigma t_*}\\{} & {} \quad \le \frac{\sigma }{2({\ell +1})} \Gamma _{{\ell +2}}(\sigma ). \end{aligned}$$

The conclusion is proven. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Xu, J. A Formal KAM Theorem for Hamiltonian Systems and Its Application to Hyperbolic Lower Dimensional Invariant Tori. Qual. Theory Dyn. Syst. 23, 92 (2024). https://doi.org/10.1007/s12346-023-00938-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00938-1

Keywords

Navigation