Skip to main content
Log in

KAM Tori for a Two Dimensional Beam Equation with a Quintic Nonlinear Term and Quasi-periodic Forcing

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This work studies a two-dimensional beam equation with a quintic nonlinear term and quasi-periodic forcing

$$\begin{aligned} u_{tt}+\Delta ^2 u+ \varepsilon \phi (t)h(u)=0,\quad x\in {\mathbb {T}}^2,\quad t\in {\mathbb {R}} \end{aligned}$$

with periodic boundary conditions, where \(\varepsilon \) is a small positive parameter; \(\phi (t)\) is a real analytic quasi-periodic function in t with frequency vector \(\eta =(\eta _1 ,\eta _2 \ldots ,\eta _{n^*})\subset [\varrho , 2\varrho ]^{n^*}\) for a given positive integer \(n^*\) and some constant \(\varrho >0\); and h is a real analytic function of the form

$$\begin{aligned} h(u)=c_1u+c_5u^5+\sum _{{\hat{i}}\ge 6}c_{{\hat{i}}}u^{{\hat{i}}},\quad c_1,c_5\ne 0. \end{aligned}$$

Firstly, the linear part of Hamiltonian system corresponding to the equation is transformed to constant coefficients by a linear quasi-periodic change of variables. Then, a symplectic transformation is used to convert the Hamiltonian system into an angle-dependent block-diagonal normal form, which can be achieved by selecting the appropriate tangential sites. Finally, it is obtained that a Whitney smooth family of small-amplitude quasi-periodic solutions for the equation by developing an abstract KAM (Kolmogorov–Arnold–Moser) theorem for infinite dimensional Hamiltonian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Arnold, V.I.: Mathematical methods in classical mechanics. Nauka, (1974), English transl. Springer, (1978)

  2. Bambusi, D., Graffi, S.: Time Quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods. Commun. Math. Phys. 219, 465–480 (2001)

    Article  MATH  Google Scholar 

  3. Eliasson, L.H., Kuksin, S.B.: KAM for the nonlinear Schrödinger equation. Ann. Math. 172, 371–435 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eliasson, L.H., Grebert, B., Kuksin, S.B.: KAM for the nonlinear beam equation. Geom. Funct. Anal. 26, 1588–1715 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eliasson, L.H., Kuksin, S.B.: On reducibility of Schrödinger equations with quasiperiodic in time potentials. Commun. Math. Phys. 286, 125–135 (2009)

    Article  MATH  Google Scholar 

  6. Eliasson, L.H.: Reducibility for Linear Quasi-periodic Differential Equations. Winter School, St Etienne deTinée (2011)

    Google Scholar 

  7. Geng, J., You, J.: A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Commun. Math. Phys. 262, 343–372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Geng, J., You, J.: KAM tori for higher dimensional beam equations with constant potentials. Nonlinearity 19, 2405–2423 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Geng, J., Xu, X., You, J.: An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv. Math. 226, 5361–5402 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Geng, J., Xue, S.: Reducible KAM tori for two-dimensional quintic Schrödinger equations. Sci. Sinica Math. 51, 457–498 (2021)

    Article  MATH  Google Scholar 

  11. Geng, J., Zhou, S.: An infinite dimensional KAM theorem with application to two dimensional completely resonant beam equation. J. Math. Phys. 59, 072702 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grébert, B., Paturel, E.: On reducibility of quantum harmonic oscillator on \({\mathbb{R} }^d\) with quasiperiodic in time potential. Annales de la faculté des sciences de Toulouse Mathématiques 28(5), 977–1014 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haus, E., Procesi, M.: Growth of sobolev norms for the quintic NLS on \({\mathbb{T} }^2\). Anal. PDE 8, 883–922 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kolmogorov, A.N.: On the conservation of conditionally periodic motions for a small Chang in Hamilton’s function. Dokl. Akad. Nauk USSR 98, 527–530 (1954). English translation in: Volume 93 of Lectures Notes in Physics. Springer (1979)

  15. Kuksin, S.B.: Nearly integrable infinite-dimensional Hamiltonian systems. Volume 1556 of Lecture Notes in Math. Springer, New York (1993)

  16. Moser, J.: Convergent series expansions for quasi-periodic motions. Math. Ann. 169, 136–176 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pöschel, J.: A KAM-theorem for some nonlinear PDEs. Ann. Sc. Norm. Super. Pisa Cl. Sci. IV Ser. 23(15), 119–148 (1996)

    MATH  Google Scholar 

  18. Procesi, C., Procesi, M.: A KAM algorithm for the resonant nonlinear Schrödinger equation. Adv. Math. 272, 399–470 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Procesi, M.: A normal form for beam and non-local nonlinear Schrödinger equations. J. Phys. A 43, 434028 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wayne, C.E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 127, 479–528 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, J., You, J.: Persistence of lower-dimensional tori under the first Melnikovs non-resonance condition. J. Math. Pures Appl. 80, 1045–1067 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yuan, X.: Quasi-periodic solutions of nonlinear Schrödinger equations of higher dimension. J. Differ. Equ. 195, 230–242 (2003)

    Article  MATH  Google Scholar 

  23. Zhang, M.: Quasi-periodic solutions of two dimensional Schrödinger equations with Quasi-periodic forcing. Nonlinear Anal. 135, 1–34 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, M., Wang, Y., Li, Y.: Reducibility and quasi-periodic solutions for a two dimensional beam equation with quasi-periodic in time potential. AIMS Math. 6(1), 643–674 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, M., Si, J.: Construction of quasi-periodic solutions for the quintic Schrödinger equation on the two-dimensional torus \({\mathbb{T} }^2\). Trans. Amer. Math. Soc. 374, 4711–4780 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their valuable comments and suggestions to improve our paper.

Funding

This work is supported by Shandong Provincial Natural Science Foundation (Nos. ZR2022MA078, ZR2021MA053, ZR2021MA028) and the Fundamental Research Funds for the Central Universities (Nos. 22CX03008A, 19CX02054A) and the NNSF of China (No.11701567)

Author information

Authors and Affiliations

Authors

Contributions

MZ, JR, YL, and JZ all contributed to this study. MZ proved the results and drafted the article. MZ, JR, YL, and JZ reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Min Zhang.

Ethics declarations

Competing interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 6.1

\({\mathcal {I}}\) is the given set with n points in Remark 1.1. For \(f,r,s,t,{\widetilde{f}},{\widetilde{r}},{\widetilde{s}},{\widetilde{t}}\in {\mathcal {I}}\), the following results true

  1. 1.

    \(f-r=0\), \(f=r\), \(|f|=|r|\) are equivalent.

  2. 2.

    \(f-r+s-t=0\), \(\{f,s\}=\{r,t\}\), \(\{|f|,|s|\}=\{|r|,|t|\}\) are equivalent.

  3. 3.

    \(f-r+s-t+{\widetilde{f}}-{\widetilde{r}}=0\), \(\{f,s,{\widetilde{f}}\}=\{r,t,{\widetilde{r}}\}\), \(\{|f|,|s|,|{\widetilde{f}}|\}=\{|r|,|t|,|{\widetilde{r}}|\}\) are equivalent.

  4. 4.

    \(f-r+s-t+{\widetilde{f}}-{\widetilde{r}}+{\widetilde{s}}-{\widetilde{t}}=0\), \(\{f,s,{\widetilde{f}},{\widetilde{s}}\}=\{r,t,{\widetilde{r}},{\widetilde{t}}\}\), \(\{|f|,|s|,|{\widetilde{f}}|,|{\widetilde{s}}|\}=\{|r|,|t|,|{\widetilde{r}}|,|{\widetilde{t}}|\}\) are equivalent.

  5. 5.

    \(<f,s>=<r,t>\), \(\{f,s\}=\{r,t\}\), \(\{|f|,|s|\}=\{|r|,|t|\}\) are equivalent.

  6. 6.

    \(<f-s,r-t>=0\) is equivalent to \(f=s\) or \(r=t\).

These results are obvious and omit the proof.

Lemma 6.2

The set \({\mathcal {I}}\) given in Remark 1.1 is admissible.

Proof

By \(i+r-j-s=0\) and \({|i|}^2+{|r|}^2-{|j|}^2-{|s|}^2=0\), then \(<j-r,i-j>=0\). By \(i+d+r-j-l-s=0\) and \({|i|}^2+{|d|}^2+{|r|}^2-{|j|}^2-{|l|}^2-{|s|}^2=0\), then \(<r-l,i-j+d-l>=<i-j,j-d>\). To prove that \({\mathcal {I}}\) has the properties (3)–(7) in Definition 1.1, we need to prove that

$$\begin{aligned}{} & {} \left\{ \begin{array}{l}<j-r, i-j>=0,\\ <{\widetilde{j}}-{\widetilde{r}},{\widetilde{i}}-{\widetilde{j}}>=0.\\ \end{array} \right. , \end{aligned}$$
(6.1)
$$\begin{aligned}{} & {} \left\{ \begin{array}{l}<i-r,j-r>=0,\\ <{\widetilde{i}}-{\widetilde{r}},{\widetilde{j}}-{\widetilde{r}}>=0.\\ \end{array} \right. , \end{aligned}$$
(6.2)
$$\begin{aligned}{} & {} \left\{ \begin{array}{l}<r-l,i-j+d-l>=<i-j,j-d>,\\<r-{\widetilde{l}},{\widetilde{i}}-{\widetilde{j}}+{\widetilde{d}}-{\widetilde{l}}>=<{\widetilde{i}}-{\widetilde{j}},{\widetilde{j}}-{\widetilde{d}}>.\\ \end{array} \right. , \end{aligned}$$
(6.3)
$$\begin{aligned}{} & {} \left\{ \begin{array}{l}<l-r,i-j+d-r>=<i-j,j-d>,\\<{\widetilde{l}}-r,{\widetilde{i}}-{\widetilde{j}}+{\widetilde{d}}-r>=<{\widetilde{i}}-{\widetilde{j}},{\widetilde{j}}-{\widetilde{d}}>.\\ \end{array} \right. , \end{aligned}$$
(6.4)
$$\begin{aligned}{} & {} \left\{ \begin{array}{l}<j-r,i-j>=0,\\ <{\widetilde{i}}-{\widetilde{r}},{\widetilde{j}}-{\widetilde{r}}>=0.\\ \end{array} \right. , \end{aligned}$$
(6.5)
$$\begin{aligned}{} & {} \left\{ \begin{array}{l}<j-r,i-j>=0,\\<r-{\widetilde{l}},{\widetilde{i}}-{\widetilde{j}}+{\widetilde{d}}-{\widetilde{l}}>=<{\widetilde{i}}-{\widetilde{j}},{\widetilde{j}}-{\widetilde{d}}>.\\ \end{array} \right. , \end{aligned}$$
(6.6)
$$\begin{aligned}{} & {} \left\{ \begin{array}{l}<j-r,i-j>=0,\\<{\widetilde{l}}-r,{\widetilde{i}}-{\widetilde{j}}+{\widetilde{d}}-r>=<{\widetilde{i}}-{\widetilde{j}},{\widetilde{j}}-{\widetilde{d}}>.\\ \end{array} \right. , \end{aligned}$$
(6.7)
$$\begin{aligned}{} & {} \left\{ \begin{array}{l}<i-r,j-r>=0,\\<r-{\widetilde{l}},{\widetilde{i}}-{\widetilde{j}}+{\widetilde{d}}-{\widetilde{l}}>=<{\widetilde{i}}-{\widetilde{j}},{\widetilde{j}}-{\widetilde{d}}>.\\ \end{array} \right. , \end{aligned}$$
(6.8)
$$\begin{aligned}{} & {} \left\{ \begin{array}{l}<i-r,j-r>=0,\\<{\widetilde{l}}-r,{\widetilde{i}}-{\widetilde{j}}+{\widetilde{d}}-r>=<{\widetilde{i}}-{\widetilde{j}},{\widetilde{j}}-{\widetilde{d}}>.\\ \end{array} \right. , \end{aligned}$$
(6.9)

and

$$\begin{aligned} \left\{ \begin{array}{l}<r-l,i-j+d-l>=<i-j,j-d>,\\<{\widetilde{l}}-r,{\widetilde{i}}-{\widetilde{j}}+{\widetilde{d}}-r>=<{\widetilde{i}}-{\widetilde{j}},{\widetilde{j}}-{\widetilde{d}}>.\\ \end{array} \right. \end{aligned}$$
(6.10)

have no solution in \(r=(r_1, r_2)\in {{\mathbb {Z}}}^{2,*}\) for \({\widetilde{i}},{\widetilde{j}},{\widetilde{d}},{\widetilde{l}},i,j,d,l\in {\mathcal {I}}\) and \(\{{\widetilde{i}},{\widetilde{j}},{\widetilde{d}},{\widetilde{l}}\}\ne \{i,j,d,l\}\).

(I) The property (2) is first proved by contradiction. The proof for the property (1) is similar and simpler. Suppose \(i,j,d,l,r\in {\mathcal {I}}\) satisfies \(<r-l, i-j+d-l>=<i-j,j-d>\).

Case 1.1. Only one element of \(\{|i|,|j|,|d|,|l|,|r|\}\) is at its maximum.

Case 1.1.1. Assuming \(|r|=\mathrm{{max}}\{|i|,|j|,|d|,|l|,|r|\}\). Write \(<r-l,i-j+d-l>=<i-j,j-d>\) in terms of the following components

$$\begin{aligned}{} & {} (r_1-l_1)(i_1-j_1+d_1-l_1)+(r_2-l_2)(i_2-j_2+d_2-l_2)\\{} & {} \qquad =(i_1-j_1)(j_1-d_1)+(i_2-j_2)(j_2-d_2). \end{aligned}$$

According to the calculation, we have

$$\begin{aligned} \begin{aligned} r_2&=l_2+\displaystyle \frac{(l_1-r_1)(i_1-j_1+d_1-l_1)+(i_1-j_1)(j_1-d_1)+(i_2-j_2)(j_2-d_2)}{i_2-j_2+d_2-l_2}\\&\le \displaystyle l_2 +\big |(l_1-r_1)(i_1-j_1+d_1-l_1)\big |+ \big |(i_1-j_1)(j_1-d_1)\big |\\&\quad +\big |(i_2-j_2)(j_2-d_2)\big |\\ {}&\le \displaystyle l_2+2r_1^2+ r_1^2+r_1^2\le l_2+ 4r_1^2< 5r_1^2. \end{aligned} \end{aligned}$$

This is contradictory to \(r_2=r_1^5\).

Case 1.1.2. Assuming \(|j|=\mathrm{{max}}\{|i|,|j|,|d|,|l|,|r|\}\), then

$$\begin{aligned} \left|<i-j,j-d>\right|>\left|<\displaystyle \frac{j}{2},\displaystyle \frac{j}{2}>\right| =\displaystyle \frac{1}{4}{|j|}^2>\left| <r-l,i-j+d-l>\right| . \end{aligned}$$

This is contradictory to the hypothesis \(<r-l,i-j+d-l>=<i-j,j-d>\).

Case 1.2. Two elements of \(\{|i|,|j|,|d|,|l|,|r|\}\) is at its maximum.

Case 1.2.1. Assuming \(|l|=|j|=\mathrm{{max}}\{|i|,|j|,|d|,|l|,|r|\}\), then

$$\begin{aligned} \begin{aligned}&<r-l,i-j+d-l>=<i-j,j-d>\\&\Rightarrow \quad<r-j,i+d-2j>=<i-j,j-d>\\&\Rightarrow \quad 3<j,j>-2<r,j>-2<i,j>-2<d,j>+<i,r>+<d,r>\\&\qquad +<i,d>=0. \end{aligned} \end{aligned}$$

But we have

$$\begin{aligned} \begin{aligned}&3<j,j>-2<r,j>-2<i,j>-2<d,j>+<i,r>\\&\qquad +<d,r>+<i,d> \\ =&3<j,j>-2<r+i+d,j>+<i,r>+<d,r>+<i,d> \\ >&0. \end{aligned} \end{aligned}$$

This is a contradiction between.

Other situations are similar to the three above. So the hypothesis \(<r-l,i-j+d-l>=<i-j,j-d>\) is not true. That is \({\mathcal {I}}\) meets the property (2) in Definition 1.1. Similarly, \({\mathcal {I}}\) meets the property (1) in Definition 1.1.

(II) Let’s prove the equation (6.3) has no solution in \({{\mathbb {Z}}}^{2,*}\). The proof for (6.1) and (6.6) is similar and simpler to the proof for (6.3).

Case 2.1. Only one of \(\{|{\widetilde{i}}|,|{\widetilde{j}}|,|{\widetilde{d}}|,|{\widetilde{l}},||i|,|j|,|d|,|l|\}\) is at its maximum.

Case 2.1.1. Assuming \(|i|=\mathrm{{max}}\{|{\widetilde{i}}|,|{\widetilde{j}}|,|{\widetilde{d}}|,|{\widetilde{l}},||i|,|j|,|d|,|l|\}\). According to the calculation, then

$$\begin{aligned} r_2=l_2+j_2-d_2+\displaystyle \frac{\alpha _{211}}{\beta _{211}}, \end{aligned}$$

where

$$\begin{aligned} \alpha _{211}= & {} i_1\left[<{\widetilde{j}}-{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}> +<j-d+l-{\widetilde{l}},{\widetilde{i}}-{\widetilde{j}}+{\widetilde{d}}-{\widetilde{l}}> \right] \\{} & {} +(d_1-j_1-l_1)\left[<{\widetilde{j}}-{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}>+<j-d+l-{\widetilde{l}},{\widetilde{i}}-{\widetilde{j}}+{\widetilde{d}}-{\widetilde{l}}> \right] \\{} & {} +({\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1-{\widetilde{l}}_1)<d-j,d-l>,\\ \beta _{211}= & {} ({\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1-{\widetilde{l}}_1)(i_2-j_2+d_2-l_2) +(j_1-i_1+l_1-d_1)\\{} & {} \times ({\widetilde{i}}_2-{\widetilde{j}}_2+{\widetilde{d}}_2-{\widetilde{l}}_2). \end{aligned}$$

To prove \(\alpha _{211}\ne 0\) by contradiction. Assuming \(\alpha _{211}= 0\), then

$$\begin{aligned}\left\{ \begin{array}{l}<{\widetilde{j}}-{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}> +<j-d+l-{\widetilde{l}},{\widetilde{i}}-{\widetilde{j}}+{\widetilde{d}}-{\widetilde{l}}>=0,\\ (d_1-j_1-l_1)\left[<{\widetilde{j}}-{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}>+<j-d+l-{\widetilde{l}},{\widetilde{i}}-{\widetilde{j}}+{\widetilde{d}}-{\widetilde{l}}> \right] \\ +({\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1-{\widetilde{l}}_1)<d-j,d-l>=0. \end{array} \right. \end{aligned}$$

From the system above we get \(({\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1-{\widetilde{l}}_1)<d-j,d-l>=0\). And in view of \({\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1-{\widetilde{l}}_1\ne 0\), then \(<d-j,d-l>=0\) is obtained. According to Lemma 6.1, then \(d=j\) or \(d=l\). It’s contradictory to \(r\in {\mathcal {N}}_3\). That is \(\alpha _{211}\ne 0\). Due to the order of the numerator \(\alpha _{211}\) doesn’t exceed \(i_1\) and the order of the divisor \(\beta _{211}\) is \(i_2\), we have \(r_2\not \in {{\mathbb {Z}}}\).

Case 2.1.2. Assuming \(|l|=\mathrm{{max}}\{|i|,|j|,|d|,|l|,|{\widetilde{i}}|,|{\widetilde{j}}|,|{\widetilde{d}}|,|{\widetilde{l}}|\}\). According to the calculation, then

$$\begin{aligned}r_2=l_2+\displaystyle \frac{\alpha _{212}l_2+\beta _{212}}{\gamma _{212}l_2+\delta _{212}}=l_2+\displaystyle \frac{\alpha _{212}}{\gamma _{212}} +\displaystyle \frac{\beta _{212}\gamma _{212}-\alpha _{212}\delta _{212}}{\gamma _{212}(\gamma _{212}l_2+\delta _{212})},\end{aligned}$$

where

$$\begin{aligned}{} & {} \alpha _{212}=(i_1-j_1+d_1-l_1)({\widetilde{i}}_2-{\widetilde{j}}_2+{\widetilde{d}}_2-{\widetilde{l}}_2), \\{} & {} \begin{aligned} \beta _{212}&=l_1({\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1-{\widetilde{l}}_1)(i_1-j_1+d_1-l_1) -({\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1-{\widetilde{l}}_1)<j\\&\quad -i,j-d> +(i_1-j_1+d_1-l_1)\big (<{\widetilde{j}}-{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}>\\&\quad -<{\widetilde{l}},{\widetilde{i}} -{\widetilde{j}}+{\widetilde{d}}-{\widetilde{l}}>\big ), \end{aligned} \\{} & {} \gamma _{212}=-\big ({\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1-{\widetilde{l}}_1\big ), \\{} & {} \delta _{212}=({\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1-{\widetilde{l}}_1)(i_2-j_2+d_2) -(i_1-j_1+d_1-l_1)({\widetilde{i}}_2-{\widetilde{j}}_2+{\widetilde{d}}_2-{\widetilde{l}}_2). \end{aligned}$$

Set

$$\begin{aligned} \sigma _{212}:=\beta _{212}\gamma _{212}-\alpha _{212}\delta _{212}, \quad \mu _{212}:=\gamma _{212}(\gamma _{212}l_2+\delta _{212}), \end{aligned}$$

then according to the calculation,

$$\begin{aligned} \sigma _{212}=\left| {\widetilde{i}}-{\widetilde{j}}+{\widetilde{d}}-{\widetilde{l}}\right| ^2l_1^2+\widetilde{\sigma }_{212}, \quad \mu _{212}=({\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1-{\widetilde{l}}_1)^2l_2+\widetilde{\mu }_{212}, \end{aligned}$$

where the order of \(\widetilde{\sigma }_{212}\) and \(\widetilde{\mu }_{212}\) don’t exceed \(l_1\). According to Lemma 6.1, then \({\widetilde{i}}-{\widetilde{j}}+{\widetilde{d}}-{\widetilde{l}}\ne 0\). So we have that \(\displaystyle \frac{\alpha _{212}}{\gamma _{212}}\) is an integer or \(\left| \displaystyle \frac{\alpha _{212}}{\gamma _{212}}-\left[ \displaystyle \frac{\alpha _{212}}{\gamma _{212}}\right] \right| > \displaystyle \frac{1}{\root 25 \of {l_{1}}}\) , and \(0<\left| \displaystyle \frac{\sigma _{212}}{\mu _{212}} -\left[ \displaystyle \frac{\sigma _{212}}{\mu _{212}}\right] \right| <\displaystyle \frac{1}{\root 5 \of {l_{1}^2}},\) where \(\left[ \bullet \right] \) is the integer operation, and then

$$\begin{aligned}\left| \displaystyle \frac{\alpha _{212}}{\gamma _{212}}+\displaystyle \frac{\sigma _{212}}{\mu _{212}} -\left[ \displaystyle \frac{\alpha _{212}}{\gamma _{212}}+\displaystyle \frac{\sigma _{212}}{\mu _{212}}\right] \right| \in (0,1).\end{aligned}$$

Hence \(r_2\not \in {{\mathbb {Z}}}\).

Other situations are similar to the above cases.

Case 2.2. Two elements of \(\{|i|,|j|,|d|,|l|,|{\widetilde{i}}|,|{\widetilde{j}}|,|{\widetilde{d}}|,|{\widetilde{l}}|\}\) are at its maximum.

Case 2.2.1. Assuming \(|i|=|d|=\mathrm{{max}}\{|i|,|j|,|d|,|l|,|{\widetilde{i}}|,|{\widetilde{j}}|,|{\widetilde{d}}|,|{\widetilde{l}}|\}\), then \(i=d\). According to the calculation, then

$$\begin{aligned}r_2= & {} l_2+\displaystyle \frac{\alpha _{221}i_2^2+\beta _{221}i_2+\gamma _{221}}{\delta _{221}i_2+\sigma _{221}} \\ {}= & {} l_2+\displaystyle \frac{\alpha _{221}}{\delta _{221}}i_2 +\displaystyle \frac{\beta _{221}\delta _{221}-\alpha _{221}\sigma _{221}}{\delta _{221}^2} +\displaystyle \frac{\gamma _{221}\delta _{221}^2-\beta _{221}\delta _{221}\sigma _{221} +\alpha _{221}\sigma _{221}^2}{\delta _{221}^2(\delta _{221}i_2+\sigma _{221})}, \end{aligned}$$

where

$$\begin{aligned} \alpha _{221}= & {} -\big ({\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1-{\widetilde{l}}_1\big ), \quad \beta _{221}=2({\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1-{\widetilde{l}}_1)j_2,\\ \gamma _{221}= & {} -\left( {\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1-{\widetilde{l}}_1\right) \left( i_1^2-2i_1j_1+|j|^2\right) \\ {}{} & {} -\left( j_1-2i_1+l_1\right) \left(<l-{\widetilde{l}},{\widetilde{i}}-{\widetilde{j}}+{\widetilde{d}}-{\widetilde{l}}> +<{\widetilde{j}}-{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}>\right) ,\\ \delta _{221}= & {} 2({\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1-{\widetilde{l}}_1), \\ \sigma _{221}= & {} -({\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1-{\widetilde{l}}_1)(j_2+l_2) +(j_1-2i_1+l_1)({\widetilde{i}}_2-{\widetilde{j}}_2+{\widetilde{d}}_2-{\widetilde{l}}_2). \end{aligned}$$

Set

$$\begin{aligned}{} & {} \mu _{221}:=\displaystyle \frac{\beta _{221}\delta _{221}-\alpha _{221}\sigma _{221}}{\delta _{221}^2}, \\{} & {} \omega _{221}:=\gamma _{221}\delta _{221}^2-\beta _{221}\delta _{221}\sigma _{221}+\alpha _{221}\sigma _{221}^2, \quad \nu _{221}:=\delta _{221}^2(\delta _{221}i_2+\sigma _{221}),\end{aligned}$$

then according to the calculation,

$$\begin{aligned} \omega _{221}=4\left| {\widetilde{i}}-{\widetilde{j}}+{\widetilde{d}}-{\widetilde{l}}\right| ^2i_1^2+\widetilde{\omega }_{221}, \quad \nu _{221}=-8({\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1-{\widetilde{l}}_1)^2i_2+\widetilde{\nu }_{221}, \end{aligned}$$

where the order of \(\widetilde{\omega }_{221}\) and \(\widetilde{\nu }_{221}\) don’t exceed \(i_1\). According to Lemma 6.1, then \(-{\widetilde{i}}+{\widetilde{j}}-{\widetilde{d}}+{\widetilde{l}}\ne 0\). So we know that \(\displaystyle \frac{\alpha _{221}}{\delta _{221}}=-\displaystyle \frac{1}{2}\), \(\mu _{221}\) is an integer or \(\left| \mu _{221}- \left[ \mu _{221}\right] \right| >\displaystyle \frac{1}{\root 25 \of {i_{1}}},\) and \(0<\left| \displaystyle \frac{\omega _{221}}{\nu _{221}} -\left[ \displaystyle \frac{\omega _{221}}{\nu _{221}}\right] \right| <\displaystyle \frac{1}{i_{1}^2}, \) and then

$$\begin{aligned}\left| \displaystyle \frac{\alpha _{221}}{\delta _{221}}i_2 +\mu _{221} +\displaystyle \frac{\omega _{221}}{\nu _{221}}-\left[ \displaystyle \frac{\alpha _{221}}{\delta _{221}}i_2 +\mu _{221} +\displaystyle \frac{\omega _{221}}{\nu _{221}}\right] \right| \in (0,1).\end{aligned}$$

Hence \(r_2\not \in {{\mathbb {Z}}}\).

Case 2.2.2. Assuming \(|l|=|{\widetilde{l}}|=\mathrm{{max}}\{|i|,|j|,|d|,|l|,|{\widetilde{i}}|,|{\widetilde{j}}|,|{\widetilde{d}}|,|{\widetilde{l}}|\}\), then \(l={\widetilde{l}}\). According to the calculation, then

$$\begin{aligned} r_2=l_2+\displaystyle \frac{\alpha _{222}}{\beta _{222}}, \end{aligned}$$

where

$$\begin{aligned} \alpha _{222}= & {} (<j-i,j-d>-<{\widetilde{j}}-{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}>)l_1\\{} & {} -({\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1)<j-i,j-d>+(i_1-j_1+d_1)<{\widetilde{j}}-{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}>,\\ \beta _{222}= & {} (i_1-j_1+d_1-{\widetilde{i}}_1+{\widetilde{j}}_1-{\widetilde{d}}_1)l_2 +({\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1-l_1)(i_2-j_2+d_2)\\{} & {} -(i_1-j_1+d_1-l_1)({\widetilde{i}}_2-{\widetilde{j}}_2+{\widetilde{d}}_2). \end{aligned}$$

To prove \(\alpha _{222}\ne 0\) by contradiction. Assumeing \(\alpha _{222}= 0\), then

$$\begin{aligned}\left\{ \begin{array}{l}<j-i,j-d>-<{\widetilde{j}}-{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}>=0,\\ -({\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1)<j-i,j-d>+(i_1-j_1+d_1)<{\widetilde{j}}-{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}>=0. \end{array} \right. \end{aligned}$$

From the system above we get \(({\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1-i_1+j_1-d_1)<j-i,j-d>=0\). And in view of \({\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1-i_1+j_1-d_1\ne 0\), then \(<j-i,j-d>=0\) is obtained. According to Lemma 6.1, we have \(j=i\) or \(j=d\). It’s contradictory to \(r\in {\mathcal {N}}_3\). That is \(\alpha _{222}\ne 0\). Due to the order of the numerator \(\alpha _{222}\) doesn’t exceed \(l_1\) and the order of the divisor \(\beta _{222}\) is \(l_2\), we have \(r_2\not \in {{\mathbb {Z}}}\).

Other situations are similar to the above cases.

Case 2.3. Three elements of \(\{|i|,|j|,|d|,|l|,|{\widetilde{i}}|,|{\widetilde{j}}|,|{\widetilde{d}}|,|{\widetilde{l}}|\}\) are at its maximum. It can be seen by [25] that such situation is similar to those mentioned above, therefore omit the proof.

Case 2.4. Four elements of \(\{|i|,|j|,|d|,|l|,|{\widetilde{i}}|,|{\widetilde{j}}|,|{\widetilde{d}}|,|{\widetilde{l}}|\}\) are at its maximum. It can be seen by [25] that such situation is similar to those mentioned above, therefore omit the proof. Thus the equation (6.3) has no solution in \({{\mathbb {Z}}}^{2,*}\). That is \({\mathcal {I}}\) meets the property (5) in Definition 1.1. Similarly, \({\mathcal {I}}\) meets the property (3) in Definition 1.1 and \({\mathcal {N}}_2\bigcap {\mathcal {N}}_4=\emptyset .\)

(III) Let’s prove the eq (6.4) has no solution in \({{\mathbb {Z}}}^{2,*}\). The proof for (6.2), (6.5), (6.7)–(6.10), is similar and simpler to the proof for (6.4).

According to the calculation, the eq (6.4) is equivalent to

$$\begin{aligned} \left\{ \begin{array}{l}<l-r,i-j+d-r>=<i-j,j-d>,\\<r,{\widetilde{i}}+{\widetilde{d}}+{\widetilde{l}}-{\widetilde{j}}-i-d-l+j> \\ =<i-j,j-d>-<{\widetilde{i}}-{\widetilde{j}},{\widetilde{j}}-{\widetilde{d}}>+<{\widetilde{i}}-{\widetilde{j}}+{\widetilde{d}},{\widetilde{l}}>\\ \quad -<i-j+d,l>. \end{array} \right. \nonumber \\ \end{aligned}$$
(6.11)

We assert |j| and \(|{\widetilde{j}}|\) is not at its maximum. Assuming \(|j|=\mathrm{{max}}\{|{\widetilde{i}}|,|{\widetilde{j}}|,|{\widetilde{d}}|,|{\widetilde{l}}|,|i|, |j|,|d|,|l|\}\). From \({|l|}^2+{|d|}^2+{|i|}^2={|r|}^2+{|s|}^2+{|j|}^2\ge {|j|}^2\) and the definition of \({\mathcal {I}}\), then there exists one element of the set \(\{l,d,i\}\) that is identical to j. If \(i=j\), then \(r+s-d-l=0\) and \({|r|}^2+{|s|}^2-{|d|}^2-{|l|}^2=0\). That is \(r\in {\mathcal {N}}_2\). This is contradictory to \(r\in {\mathcal {N}}_4\). That is \(|j|\ne \mathrm{{max}}\{|{\widetilde{i}}|,|{\widetilde{j}}|,|{\widetilde{d}}|,|{\widetilde{l}}|,|i|,|j|,|d|,|l|\}\). Similarly, we have \(|{\widetilde{j}}|\ne \mathrm{{max}}\{|{\widetilde{i}}|,|{\widetilde{j}}|,|{\widetilde{d}}|,|{\widetilde{l}}|,|i|,|j|,|d|,|l|\}\).

Case 3.1. Only one element of \(\{|{\widetilde{i}}|,|{\widetilde{j}}|,|{\widetilde{d}}|,|{\widetilde{l}}|,|i|,|j|,|d|,|l|\}\) is at its maximum. Assuming \(|d|=\mathrm{{max}}\{|{\widetilde{i}}|,|{\widetilde{j}}|,|{\widetilde{d}}|,|{\widetilde{l}}|,|i|,|j|,|d|,|l|\}\), then

$$\begin{aligned} {|r|}^2={|{\widetilde{i}}|}^2-{|{\widetilde{j}}|}^2+{|{\widetilde{d}}|}^2+{|{\widetilde{l}}|}^2-{|{\widetilde{s}}|}^2\ll d_1. \end{aligned}$$

According to the calculation to (6.11),

$$\begin{aligned} r_2=i_2-j_2+l_2+\displaystyle \frac{\alpha _{31}}{\beta _{31}}, \end{aligned}$$

where

$$\begin{aligned} \alpha _{31}= & {} \left( i_1-j_1+l_1-r_1\right) d_1+<j-i,j-l>-<{\widetilde{j}}-{\widetilde{d}},{\widetilde{j}}-{\widetilde{l}}>\\{} & {} +<{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}-{\widetilde{l}}>- r_1\left( i_1-j_1+l_1-{\widetilde{i}}_1+{\widetilde{j}}_1-{\widetilde{d}}_1-{\widetilde{l}}_1\right) \\{} & {} +(i_2+l_2-j_2)(-i_2+j_2-l_2+{\widetilde{i}}_2+{\widetilde{d}}_2+{\widetilde{l}}_2-{\widetilde{j}}_2),\\ \beta _{31}= & {} d_2+(i_2+l_2-j_2+{\widetilde{j}}_2-{\widetilde{i}}_2-{\widetilde{d}}_2-{\widetilde{l}}_2). \end{aligned}$$

To prove \(\alpha _{31}\ne 0\) by contradiction. Assuming \(\alpha _{31}= 0\), then

$$\begin{aligned} i_1-j_1+l_1-r_1=0,\quad r_2=i_2-j_2+l_2. \end{aligned}$$

That is \(i-j+l-r=0.\) Thus we have \(d=s\) by \(i-j+d+l-r-s=0.\) This is contradictory to \(d\in {\mathcal {I}}\) and \(s\in {{\mathbb {Z}}}^{2,s}\). That is \(\alpha _{31}\ne 0\). Due to the order of the numerator \(\alpha _{31}\) does not exceed \(d_1\) and the order of the divisor \(\beta _{31}\) is \(d_2\), we have \(r_2\not \in {{\mathbb {Z}}}\).

Other situations are similar to the above cases.

Case 3.2. Two of \(\{|{\widetilde{i}}|,|{\widetilde{j}}|,|{\widetilde{d}}|,|{\widetilde{l}}|,|i|,|j|,|d|,|l|\}\) are at its maximum.

Case 3.2.1. Assuming \(|l|=|{\widetilde{l}}|=\mathrm{{max}}\{|{\widetilde{i}}|,|{\widetilde{j}}|,|{\widetilde{d}}|,|{\widetilde{l}}|,|i|,|j|,|d|,|l|\}\), then \(l={\widetilde{l}}\). According to the eq (6.11), then

$$\begin{aligned} \alpha _{321}r_1^2+\beta _{321}r_1+\gamma _{321}=0, \end{aligned}$$

where

$$\begin{aligned} \alpha _{321}= & {} \left| i+d-j+{\widetilde{j}}-{\widetilde{i}}-{\widetilde{d}}\right| ^2, \\ \beta _{321}= & {} 2\left( i_1+d_1-j_1+{\widetilde{j}}_1-{\widetilde{i}}_1-{\widetilde{d}}_1\right) \left( -<j-i,j-d>+<{\widetilde{j}}-{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}> \right) \\ {}{} & {} -2\left( i_1-j_1+d_1+{\widetilde{j}}_1-{\widetilde{i}}_1-{\widetilde{d}}_1\right)<l,i-j+d+{\widetilde{j}}-{\widetilde{i}}-{\widetilde{d}}> \\ {}{} & {} +\left( i_1-j_1+d_1+l_1\right) \left( i_2-j_2+d_2+{\widetilde{j}}_2-{\widetilde{i}}_2-{\widetilde{d}}_2\right) \left( {\widetilde{i}}_2-{\widetilde{j}}_2+{\widetilde{d}}_2+{l}_2\right) \\ {}{} & {} -\left( {\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1+{l}_1\right) \left( i_2-j_2+d_2+{\widetilde{j}}_2-{\widetilde{i}}_2-{\widetilde{d}}_2\right) \left( i_2-j_2+d_2+l_2\right) , \\ \gamma _{321}= & {} \left( -<j-i,j-d>+<{\widetilde{j}}-{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}>-<l,i-j+d+{\widetilde{j}}-{\widetilde{i}}\right. \\ {}{} & {} \left. -{\widetilde{d}}> \right) ^2 +\left( i_2-j_2+d_2+{\widetilde{j}}_2-{\widetilde{i}}_2-{\widetilde{d}}_2\right) \left( i_2-j_2+d_2+l_2\right) \left(<{\widetilde{j}}\right. \\ {}{} & {} \left. -{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}>+<l,{\widetilde{i}}-{\widetilde{j}}+{\widetilde{d}}>\right) -\left( i_2-j_2+d_2+{\widetilde{j}}_2-{\widetilde{i}}_2-{\widetilde{d}}_2\right) \\ {}{} & {} \left( {\widetilde{i}}_2-{\widetilde{j}}_2+{\widetilde{d}}_2+l_2\right) \left(<j-i,j-d>+<l,{i}-{j}+{d}>\right) . \end{aligned}$$

Therefore,

$$\begin{aligned} \Delta= & {} \beta _{321}^2-4\alpha _{321}\gamma _{321} \\ {}= & {} \delta _{321}^2\cdot \left[ l_2+\displaystyle \frac{\sigma _{321}}{\left( i_1-j_1+d_1+{\widetilde{j}}_1-{\widetilde{i}}_1-{\widetilde{d}}_1\right) ^2} \right] ^2 \\ {}{} & {} +4\left( i_2-j_2+d_2+{\widetilde{j}}_2-{\widetilde{i}}_2-{\widetilde{d}}_2\right) ^2\cdot \displaystyle \frac{\left| i-j+d+{\widetilde{j}}-{\widetilde{i}}-{\widetilde{d}}\right| ^2}{\left( i_1-j_1+d_1+{\widetilde{j}}_1-{\widetilde{i}}_1-{\widetilde{d}}_1\right) }\cdot \mu _{321}, \end{aligned}$$

where

$$\begin{aligned} \delta _{321}= & {} \left( i_1-j_1+d_1+{\widetilde{j}}_1-{\widetilde{i}}_1-{\widetilde{d}}_1\right) \left( i_2-j_2+d_2+{\widetilde{j}}_2-{\widetilde{i}}_2-{\widetilde{d}}_2\right) ,\\{\sigma }_{321}= & {} -\left( i_1-j_1+d_1+{\widetilde{j}}_1-{\widetilde{i}}_1-{\widetilde{d}}_1\right) \left( i_2-j_2+d_2+{\widetilde{j}}_2-{\widetilde{i}}_2-{\widetilde{d}}_2\right) l_1 \\ {}{} & {} +2\left( i_2-j_2+d_2+{\widetilde{j}}_2-{\widetilde{i}}_2-{\widetilde{d}}_2\right) \left(<{\widetilde{j}}-{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}>-<j-i,j-d>\right) \\ {}{} & {} +\left( i_1-j_1+d_1+{\widetilde{j}}_1-{\widetilde{i}}_1-{\widetilde{d}}_1\right) \left( {\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1\right) \left( i_2-j_2+d_2\right) \\ {}{} & {} -\left( i_1-j_1+d_1+{\widetilde{j}}_1-{\widetilde{i}}_1-{\widetilde{d}}_1\right) \left( i_1-j_1+d_1\right) \left( {\widetilde{i}}_2-{\widetilde{j}}_2+{\widetilde{d}}_2\right) , \\{\mu }_{321}= & {} \left(<{\widetilde{j}}-{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}>-<j-i,j-d>\right) l_1 \\ {}{} & {} +<j-i,j-d>\left( {\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1\right) -<{\widetilde{j}}-{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}>\left( {i}_1-{j}_1+{d}_1\right) \\ {}{} & {} -\displaystyle \frac{\left(<{\widetilde{j}}-{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}>-<j-i,j-d>\right) ^2}{\left( i_1-j_1+d_1+{\widetilde{j}}_1-{\widetilde{i}}_1-{\widetilde{d}}_1\right) }. \end{aligned}$$

Due to \(\mu _{321}\) is of order \(l_1\) which is far less than \(l_2\), we have

$$\begin{aligned} \Delta= & {} \delta _{321}^2\cdot \left[ l_2+\displaystyle \frac{\sigma _{321}}{\left( i_1-j_1+d_1+{\widetilde{j}}_1-{\widetilde{i}}_1-{\widetilde{d}}_1\right) ^2} -\omega _{321}\right] ^2, \end{aligned}$$

where

$$\begin{aligned}\omega _{321}\sim \displaystyle \frac{l_1}{l_2}\ll \displaystyle \frac{1}{\left( i_1-j_1+d_1+{\widetilde{j}}_1-{\widetilde{i}}_1-{\widetilde{d}}_1\right) ^2}.\end{aligned}$$

Therefore

$$\begin{aligned} r_1= & {} \displaystyle \frac{-\beta _{321}\pm \sqrt{\Delta }}{2\alpha _{321}} \\ {}= & {} \displaystyle \frac{-\beta _{321}}{2\alpha _{321}}\pm \displaystyle \frac{|\delta _{321}|l_2 +\displaystyle \frac{|\delta _{321}|\sigma _{321}}{\left( i_1-j_1+d_1+{\widetilde{j}}_1-{\widetilde{i}}_1-{\widetilde{d}}_1\right) ^2}-|\delta _{321}|\omega _{321}}{2\alpha _{321}}. \end{aligned}$$

In view of \(0<\left| \displaystyle \frac{|\delta _{321}|\omega _{321}}{2\alpha _{321}}\right| \ll \displaystyle \frac{1}{2\alpha _{321} \left( i_1-j_1+d_1+{\widetilde{j}}_1-{\widetilde{i}}_1-{\widetilde{d}}_1\right) ^2}\), we have \(r_1\not \in {{\mathbb {Z}}}\).

Other situations are similar to the above cases.

Case 3.3. Three elements of \(\{|{\widetilde{i}}|,|{\widetilde{j}}|,|{\widetilde{d}}|,|{\widetilde{l}}|,|i|,|j|,|d|,|l|\}\) are at its maximum. It can be seen by [25] that such situation is similar to those mentioned above, So omit the proof.

Case 3.4. Four elements of \(\{|{\widetilde{i}}|,|{\widetilde{j}}|,|{\widetilde{d}}|,|{\widetilde{l}}|,|i|,|j|,|d|,|l|\}\) are at its maximum.

Case 3.4.1. Assuming \(|i|=|d|=|l|=|{\widetilde{l}}|=\mathrm{{max}}\{|{\widetilde{i}}|,|{\widetilde{j}}|,|{\widetilde{d}}|,|{\widetilde{l}}|,|i|,|j|,|d|,|l|\}\), then \(i=d=l={\widetilde{l}}\). According to the calculation to (6.11),

$$\begin{aligned}\alpha _{341}r_1^2+\beta _{341}r_1+\gamma _{341}=0, \end{aligned}$$

where

$$\begin{aligned} \alpha _{341}= & {} \left| 2l-j+{\widetilde{j}}-{\widetilde{i}}-{\widetilde{d}}\right| ^2, \\ \beta _{341}= & {} 2\left( 2l_1-j_1+{\widetilde{j}}_1-{\widetilde{i}}_1-{\widetilde{d}}_1\right) \left( -\left| j-l\right| ^2+<{\widetilde{j}}-{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}>\right) \\ {}{} & {} +2\left( 2l_1-j_1+{\widetilde{j}}_1-{\widetilde{i}}_1-{\widetilde{d}}_1\right)<l,-2l+j+{\widetilde{i}}-{\widetilde{j}}+{\widetilde{d}}> \\ {}{} & {} +\left( 3l_1-j_1\right) \left( 2l_2-j_2+{\widetilde{j}}_2-{\widetilde{i}}_2-{\widetilde{d}}_2\right) \left( {l}_2+{\widetilde{i}}_2-{\widetilde{j}}_2+{\widetilde{d}}_2\right) \\ {}{} & {} -\left( {l}_1+{\widetilde{i}}_1-{\widetilde{j}}_1+{\widetilde{d}}_1\right) \left( 2l_2-j_2+{\widetilde{j}}_2-{\widetilde{i}}_2-{\widetilde{d}}_2\right) \left( 3l_2-j_2\right) , \\ \gamma _{341}= & {} -\left| j-l\right| ^2+\left(<{\widetilde{j}}-{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}> +<l,-2l+j+{\widetilde{i}}-{\widetilde{j}}+{\widetilde{d}}> \right) ^2 \\ {}{} & {} +\left( 2l_2-j_2+{\widetilde{j}}_2-{\widetilde{i}}_2-{\widetilde{d}}_2\right) \left( 3l_2-j_2\right) \cdot \left(<{\widetilde{j}}-{\widetilde{i}},{\widetilde{j}}-{\widetilde{d}}>+<l,{\widetilde{i}}-{\widetilde{j}}\right. \\ {}{} & {} \left. +{\widetilde{d}}>\right) -\left( 2l_2-j_2+{\widetilde{j}}_2-{\widetilde{i}}_2-{\widetilde{d}}_2\right) \left( {l}_2+{\widetilde{i}}_2-{\widetilde{j}}_2+{\widetilde{d}}_2\right) \cdot \\ {}{} & {} \times \left( |j-l|^2+<l,2l-j>\right) . \end{aligned}$$

The equation (6.11) has no solution in \({{\mathbb {Z}}}^{2,*}\) because

$$\begin{aligned} \Delta =\beta _{341}^2-4\alpha _{341}\gamma _{341} =\left( 2l_2-j_2+{\widetilde{j}}_2-{\widetilde{i}}_2-{\widetilde{d}}_2\right) ^2\cdot l_2^2\cdot \left( -8l_2^2+\delta _{341}\right) <0, \end{aligned}$$

where the order of \({\delta }_{341}\) does not exceed \(l_2\).

Other situations are similar to the above cases.

Case 3.5. Five elements of \(\{|{\widetilde{i}}|,|{\widetilde{j}}|,|{\widetilde{d}}|,|{\widetilde{l}}|,|i|,|j|,|d|,|l|\}\) are at its maximum. It can be seen by [25] that such situation is similar to those mentioned above, so omit the proof.

Case 3.6. Six elements of \(\{|{\widetilde{i}}|,|{\widetilde{j}}|,|{\widetilde{d}}|,|{\widetilde{l}}|,|i|,|j|,|d|,|l|\}\) are at its maximum. It can be seen by [25] that such situation is similar to those mentioned above, so omit the proof.

So the equation (6.4) has no solution in \({{\mathbb {Z}}}^{2,*}\). That is \({\mathcal {I}}\) meets the property (6) in Definition 1.1. Similarly, \({\mathcal {I}}\) meets the properties (4) and (7) in Definition 1.1. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Rui, J., Li, Y. et al. KAM Tori for a Two Dimensional Beam Equation with a Quintic Nonlinear Term and Quasi-periodic Forcing. Qual. Theory Dyn. Syst. 21, 154 (2022). https://doi.org/10.1007/s12346-022-00687-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00687-7

Keywords

Mathematics Subject Classification

Navigation