Skip to main content

Advertisement

Log in

A Diagnostic Approach to Spastic ataxia Syndromes

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spastic ataxia is characterized by the combination of cerebellar ataxia with spasticity and other pyramidal features. It is the hallmark of some hereditary ataxias, but it can also occur in some spastic paraplegias and acquired conditions. It often presents with heterogenous clinical features with other neurologic and non-neurological symptoms, resulting in complex phenotypes. In this review, the differential diagnosis of spastic ataxias are discussed and classified in accordance with inheritance. Establishing an organized classification method based on mode inheritance is fundamental for the approach to patients with these syndromes. For each differential, the clinical features, neuroimaging and genetic aspects are reviewed. A diagnostic approach for spastic ataxias is then proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. de Bot ST, Willemsen MA, Vermeer S, Kremer HP, van de Warrenburg BP. Reviewing the genetic causes of spastic-ataxias. Neurology. 2012;79(14):1507–14.

    Article  PubMed  Google Scholar 

  2. Bereznyakova O, Dupré N. Spastic ataxias. Handb Clin Neurol. 2018;155:191–203.

    Article  PubMed  Google Scholar 

  3. Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H, et al. The classification of autosomal recessive cerebellar ataxias: a consensus statement from the society for research on the cerebellum and ataxias task force. Cerebellum. 2019;18(6):1098–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Klockgether T, Mariotti C, Paulson HL. Spinocerebellar ataxia. Nat Rev Dis Primers. 2019;5(1):24.

    Article  PubMed  Google Scholar 

  5. Genis D, Ortega-Cubero S, San Nicolás H, Corral J, Gardenyes J, de Jorge L, et al. Heterozygous stub1 mutation causes familial ataxia with cognitive affective syndrome (sca48). Neurology. 2018;91(21):e1988–98.

    Article  CAS  PubMed  Google Scholar 

  6. Vaz FM, McDermott JH, Alders M, Wortmann SB, Kolker S, Pras-Raves ML, et al. Mutations in pcyt2 disrupt etherlipid biosynthesis and cause a complex hereditary spastic paraplegia. Brain. 2019;142(11):3382–97.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sasaki H, Fukazawa T, Yanagihara T, Hamada T, Shima K, Matsumoto A, et al. Clinical features and natural history of spinocerebellar ataxia type 1. Acta Neurol Scand. 1996;93(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  8. Pedroso JL, de Souza PV, Pinto WB, Braga-Neto P, Albuquerque MV, et al. SCA1 patients may present as hereditary spastic paraplegia and must be included in spastic-ataxias group. Parkinsonism Relat Disord. 2015;21(10):1243–6.

    Article  PubMed  Google Scholar 

  9. Martins Junior CR, Martinez ARM, Vasconcelos IF, Rezende TJR, Casseb RF, Pedroso JL, et al. Structural signature in SCA1: clinical correlates, determinants and natural history. J Neurol. 2018;265(12):2949–59.

    Article  PubMed  Google Scholar 

  10. Wang YG, Du J, Wang JL, Chen J, Chen C, Luo Y, et al. Six cases of SCA3/MJD patients that mimic hereditary spastic paraplegia in clinic. J Neurol Sci. 2009;285(1–2):121–4.

    Article  PubMed  Google Scholar 

  11. Moro A, Munhoz RP, Arruda WO, Raskin S, Moscovich M, Teive HAG. Spinocerebellar ataxia type 3: subphenotypes in a cohort of Brazilian patients. Arq Neuropsiquiatr. 2014;72(9):659–62.

    Article  PubMed  Google Scholar 

  12. Guimarães RP, D'Abreu A, Yasuda CL, França MC Jr, Silva BHB, Cappabianco FAM, Bergo FPG, et al. A multimodal evaluation of microstructural white matter damage in spinocerebellar ataxia type 3. Mov Disord. 2013;28(8):1125–32.

    Article  PubMed  Google Scholar 

  13. Velázquez-Pérez L, Rodríguez-Labrada R, Torres-Vega R, Ortega-Sánchez R, Medrano-Montero J, González-Piña R, et al. Progression of corticospinal tract dysfunction in pre-ataxic spinocerebellar ataxia type 2: a two-years follow-up TMS study. Clin Neurophysiol. 2018;129(5):895–900.

    Article  PubMed  Google Scholar 

  14. Teive HA, Munhoz RP, Arruda WO, Lopes-Cendes I, Raskin S, Werneck LC, et al. Spinocerebellar ataxias: genotype-phenotype correlations in 104 Brazilian families. Clinics (Sao Paulo). 2012;67(5):443–9.

    Article  PubMed Central  Google Scholar 

  15. de Souza PVS, de Rezende Pinto WBV, de Rezende Batistella GN, Bortholin T, Oliveira ASB. Hereditary spastic paraplegia: clinical and genetic hallmarks. Cerebellum. 2017;16(2):525–51.

    Article  PubMed  Google Scholar 

  16. Yu-Wai-Man P, Griffiths PG, Gorman GS, Lourenço CM, Wright AF, Auer-Grumbach M, et al. Multi-system neurological disease is common in patients with OPA1 mutations. Brain. 2010;133(pt3):771–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mead S, James-Galton M, Revesz T, Doshi RB, Harwood G, Pan EL, et al. Familial British dementia with amyloid angiopathy: early clinical, neuropsychological and imaging findings. Brain. 2000;123(pt5):975–91.

    Article  PubMed  Google Scholar 

  18. Braga-Neto P, Pedroso JL, Alessi H, Souza PVS, Bertolucci PHF, Barsottini OGP. Early-onset familial Alzheimer's disease related to presenilin 1 mutation resembling autosomal dominant spinocerebellar ataxia. J Neurol. 2013;260(4):1177–9.

    Article  PubMed  Google Scholar 

  19. Kaneko H, Hirose M, Katada S, Takahashi T, Naruse S, Tsuchiya M, et al. Novel GFAP mutation in patient with adult-onset Alexander disease presenting with spastic ataxia. Mov Disord. 2009;24(9):1393–5.

    Article  PubMed  Google Scholar 

  20. Pedroso JL, Raskin S, Barsottini OGP, Oliveira ASB. Adult onset Alexander disease presenting with progressive spastic paraplegia. Parkinsonism Relat Disord. 2014;20(2):241–2.

    Article  PubMed  Google Scholar 

  21. Pedroso JL, Braga-Neto P, Abrahão A, Rivero RLM, Abdalla C, Abdala N, et al. Autosomal recessive spastic Ataxia of Charlevoix-Saguenay (ARSACS): typical clinical and neuroimaging features in a Brazilian family. Arq Neuropsiquiatr. 2011;69(2B):288–91.

    Article  PubMed  Google Scholar 

  22. Rezende Filho FM, Parkinson MH, Pedroso JL, Poh R, Faber I, Lourenço CM, et al. Clinical, ophthalmological, imaging and genetic features in brazilian patients with ARSACS. Parkinsonism Relat Disord. 2019;62:148–55.

    Article  PubMed  Google Scholar 

  23. van Gassen KL, van der Heijden CD, de Bot ST, den Dunnen WFA, van den Berg LH, Verschuuren-Bemelmans CC, et al. Genotype-phenotype correlations in spastic paraplegia type 7: a study in a large dutch cohort. Brain. 2012;135(pt10):2994–3004.

    Article  PubMed  Google Scholar 

  24. Pedroso JL, Vale TC, Bueno FL, Marussi VHR, Amaral LLF, França MC Jr, et al. SPG7 with parkinsonism responsive to levodopa and dopaminergic deficit. Parkinsonism Relat Disord. 2018;47:88–90.

    Article  PubMed  Google Scholar 

  25. Choquet K, Tétreault M, Yang S, La Piana R, Dicaire MJ, Vanstone MR, et al. SPG7 mutations explain a significant proportion of french Canadian spastic ataxia cases. Eur J Hum Genet. 2016;24(7):1016–21.

    Article  CAS  PubMed  Google Scholar 

  26. Abrahão A, Pedroso JL, Braga-Neto P, Bor-Seng-Shu E, de Carvalho AP, Barsottini OG. Milestones in Friedreich ataxia: more than a century and still learning. Neurogenetics. 2015;16(3):151–60.

    Article  PubMed  Google Scholar 

  27. Martinez AR, Moro A, Abrahao A, Faber I, Borges CR, Rezende TJR, et al. Nonneurological involvement in late-onset Friedreich Ataxia (LOFA): exploring the phenotypes. Cerebellum. 2017;16(1):253–6.

    Article  PubMed  Google Scholar 

  28. Lange MC, Zétola VF, Teive HAG, Scola RH, Trentin AN, Zavala JA, et al. Cerebrotendinous xanthomatosis: report of two Brazilian brothers. Arq Neuropsiquiatr. 2004;62(4):1085–9.

    Article  PubMed  Google Scholar 

  29. Erfanian Omidvar M, Torkamandi S, Rezaei S, Alipoor B, Omrani MD, Darvish H, et al. Genotype-phenotype associations in hereditary spastic paraplegia: a systematic review and meta-analysis on 13,570 patients. J Neurol. 2021;268:2065–82.

    Article  CAS  PubMed  Google Scholar 

  30. da Graça FF, de Rezende TJR, Vasconcellos LFR, Pedroso JL, Barsottini OGP, França MC Jr. Neuroimaging in hereditary spastic paraplegias: current use and future perspectives. Front Neurol. 2019;9:1117.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lynch DS, Wade C, Paiva ARB, John N, Kinsella JA, Merwick A, et al. Practical approach to the diagnosis of adult-onset leukodystrophies: an updated guide in the genomic era. J Neurol Neurosurg Psychiatry. 2019;90(5):543–54.

    Article  PubMed  Google Scholar 

  32. van der Knaap MS, Schiffmann R, Mochel F, Wolf NI. Diagnosis, prognosis, and treatment of leukodystrophies. Lancet Neurol. 2019;18(10):962–72.

    Article  PubMed  Google Scholar 

  33. Chelban V, Patel N, Vandrovcova J, Zanetti MN, Lynch DS, Ryten M, et al. Mutations in NKX6-2 cause progressive spastic ataxia and hypomyelination. Am J Hum Genet. 2017;100(6):969–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bereshneh AH, Hosseipour S, Rasoulinezhad MS, Pak N, Garshasbi M, Tavasoli AR. Expanding the clinical and neuroimaging features of NKX6-2-related hereditary spastic ataxia type 8. Eur J Med Genet. 2020;63(5):103868.

    Article  Google Scholar 

  35. Marchionni E, Méneret A, Keren B, Melki J, Denier C, Durr A, et al. KIF1C variants are associated with hypomyelination, ataxia, tremor, and dystonia in fraternal twins. Tremor Other Hyperkinet Mov. 2019;9.

  36. Alcázar-Fabra M, Trevisson E, Brea-Calvo G. Clinical syndromes associated with coenzyme Q10 deficiency. Essays Biochem. 2018;62(3):377–98.

    Article  PubMed  Google Scholar 

  37. Chang A, Ruiz-Lopez M, Slow E, Tarnopolsky M, Lang AE, Munhoz RP. ADCK3-related coenzyme Q10 deficiency: a potentially treatable genetic disease. Mov Disord Clin Pract. 2018;5(6):635–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nanetti L, Sarto E, Castaldo A, Magri S, Mongelli A, Sebastiano DR, et al. ANO10 mutational screening in recessive ataxia: genetic findings and refinement of the clinical phenotype. J Neurol. 2019;266(2):378–85.

    Article  CAS  PubMed  Google Scholar 

  39. Ebrahimi-Fakhari D, Van Karnebeek C, Münchau A. Movement disorders in treatable inborn errors of metabolism. Mov Disord. 2019;34(5):598–613.

    Article  PubMed  Google Scholar 

  40. Synofzik M, Smets K, Mallaret M, Di Bella D, Gallenmüller C, Baets J, et al. SYNE1 ataxia is a common recessive ataxia with major non-cerebellar features: a large multicentre study. Brain. 2016;139(5):1378–93.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Koeppen AH, Robitaille Y. Pelizaeus-Merzbacher disease. J Neuropathol Exp Neurol. 2002;61(9):747–59.

    Article  PubMed  Google Scholar 

  42. Engelen M, Kemp S, de Visser M, van Geel BM, Wanders RJ, Aubourg P, et al. X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J Rare Dis. 2012;7:51.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mendoza-Ferreira N, Coutelier M, Janzen E, Hosseinibarkooie S, Lohr H, Schneider S, et al. Biallelic CHP1 mutation causes human autosomal recessive ataxia by impairing NHE1 function. Neurol Genet. 2018;4(1):e209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Timby N, Stattin EL, Kristiansen I, Eriksson U, Erikson A. Early onset autosomal dominant spinocerebellar ataxia with miosis: four cases. Eur J Paediatr Neurol. 2008;12(1):38–40.

    Article  PubMed  Google Scholar 

  45. Briani C, Dalla Torre C, Citton V, Manara R, Pompanin S, Binotto G, et al. Cobalamin deficiency: clinical picture and radiological findings. Nutrients. 2013;5(11):4521–39.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sun HY, Lee JW, Park KS, Wi JY, Kan HS. Spine MR imaging features of subacute combined degeneration patients. Eur Spine J. 2014;23(5):1052–8.

    Article  PubMed  Google Scholar 

  47. Jaiser SR, Winston GP. Copper deficiency myelopathy. J Neurol. 2010;257(6):869–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kumar N. Metabolic and toxic myelopathies. Semin Neurol. 2012;32(2):123–36.

    Article  PubMed  Google Scholar 

  49. Vorgerd M, Tegenthoff M, Kühne D, Malin JP. Spinal MRI in progressive myeloneuropathy associated with vitamin E deficiency. Neuroradiology. 1996;38:S111–3.

    Article  PubMed  Google Scholar 

  50. Brownlee WJ, Hardy TA, Fazekas F, Miller DH. Diagnosis of multiple sclerosis: progress and challenges. Lancet. 2017;389(10076):1336–46.

    Article  PubMed  Google Scholar 

  51. Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376(3):209–20.

    Article  CAS  PubMed  Google Scholar 

  52. Giometto B, Grisold W, Vitaliani R, Graus F, Honnorat J, Bertolini G, et al. Paraneoplastic neurologic syndrome in the PNS Euronetwork database: a European study from 20 centers. Arch Neurol. 2010;67(3):330–5.

    Article  PubMed  Google Scholar 

  53. Vernino S. Paraneoplastic cerebellar degeneration. Handb Clin Neurol. 2012;103:215–23.

    Article  PubMed  Google Scholar 

  54. Othman T, Hendizadeh MS, Vankina R, Park S, Kim P. Combined cerebellar and spinal cord deficits caused by an underlying gynecologic malignancy. Case Rep Oncol Med. 2020;2020:9021843.

    PubMed  PubMed Central  Google Scholar 

  55. Hadjivassiliou M, Martindale J, Shanmugarajah P, Grunewald RA, Sarrigiannis PG, Beauchamp N, et al. Causes of progressive cerebellar ataxia: prospective evaluation of 1500 patients. J Neurol Neurosurg Psychiatry. 2017;88(4):301–9.

    Article  CAS  PubMed  Google Scholar 

  56. Carod-Artal FJ, Mesquita HM, Silveira RL. Manifestaciones neurológicas y discapacidad en pacientes que padecen mielopatía asociada al HTLV-1. Neurologia. 2008;23(2):78–84.

    CAS  PubMed  Google Scholar 

  57. Castillo LC, Gracia F, Román GC, Levine P, Reeves WC, Kaplan J. Spinocerebellar syndrome in patients infected with human T-lymphotropic virus types I and II (HTLV-I/HTLV-II): report of 3 cases from Panama. Acta Neurol Scand. 2000;101(6):405–12.

    Article  CAS  PubMed  Google Scholar 

  58. Wuliji N, Mandell MJ, Lunt JM, Merando A. HIV-associated vacuolar myelopathy and HIV-associated dementia as the initial manifestation of HIV/AIDS. Case Rep Infect Dis. 2019;2019:3842425.

    PubMed  PubMed Central  Google Scholar 

  59. Petito CK, Navia BA, Cho ES, Jordan BD, George DC, Price RW. Vacuolar myelopathy pathologically resembling subacute combined degeneration in patients with the acquired immunodeficiency syndrome. N Engl J Med. 1985;312(14):874–9.

    Article  CAS  PubMed  Google Scholar 

  60. Tan CS, Koralnik IJ. Progressive multifocal leukoencephalopathy and other disorders caused by JC virus: clinical features and pathogenesis. Lancet Neurol. 2010;9:425–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wilson D, Chatterjee F, Farmer SD, et al. Infratentorial superficial siderosis: classification, diagnostic criteria, and rational investigation pathway. Ann Neurol. 2017;81(3):333–43.

    Article  CAS  PubMed  Google Scholar 

  62. Wenning GK, Shlomo B, Magalhães M, Danie SE, Quinn NP. Clinical features and natural history of multiple system atrophy: an analysis of 100 cases. Brain. 1994;117(4):835–45.

    Article  PubMed  Google Scholar 

  63. Rocha AJ, Maia ACM Jr, Silva CJ, Braga FT, Ferreira NPDF, Barsottini OGP, et al. Pyramidal tract degeneration in multiple system atrophy: the relevance of magnetization transfer imaging. Mov Disord. 2007;22(2):238–44.

    Article  PubMed  Google Scholar 

  64. Bhidayasiri R, Perlman SL, Pulst SM, Geschwind DH. Late-onset Friedreich ataxia: phenotypic analysis, magnetic resonance imaging findings, and review of the literature. Arch Neurol. 2005;62(12):1865–9.

    Article  PubMed  Google Scholar 

  65. Synofzik M, Soehn AS, Gburek-Augustat J, Schicks J, Karle KN, Schule R, et al. Autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS): expanding the genetic, clinical and imaging spectrum. Orphanet J Rare Dis. 2013;8:41.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Stumpf E, Masson H, Duquette A, Berthelet F, McNabb J, Lortie A, et al. Adult Alexander disease with autosomal dominant transmission: a distinct entity caused by mutation in the glial fibrillary acid protein gene. Arch Neurol. 2003;60(9):1307–12.

    Article  PubMed  Google Scholar 

  67. Rodriguez Quiroga SA, Gonzalez Moron D, Arakaki T, Garreto N, Kauffman MA. The broad phenotypic spectrum of SCA-3: hereditary spastic paraplegia. Medicina (B Aires). 2013;73:552–4.

    Google Scholar 

  68. Nanetti L, Sarto E, Castaldo A, Magri S, Mongelli A, Sebastiano DR, et al. ANA10 mutational screening in recessive ataxia: genetic findings and refinement of the clinical phenotype. J Neurol. 2019;266(2):378–85.

    Article  CAS  PubMed  Google Scholar 

  69. Rodríguez-Labrada R, Velázquez-Pérez L, Ziemann U. Transcranial magnetic stimulation in hereditary ataxias: diagnostic utility, pathophysiological insight and treatment. Clin Neurophysiol. 2018;129(8):1688–98.

    Article  PubMed  Google Scholar 

  70. Schwenkreis P, Tegenthoff M, Witscher K, Bornke C, Przuntek H, Malin J-P, et al. Motor cortex activation by transcranial magnetic stimulation in ataxia patients depends on the genetic defect. Brain. 2002;125:301–9.

    Article  PubMed  Google Scholar 

  71. Siow S-F, Smail RC, Ng K, Jumar KR, Sue CM. Motor evoked potentials in hereditary spastic paraplegia – a systematic review. Front Neurol. 2019;10:967.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Xue Y, Ankala A, Wilcox WR, Hegde MR. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med. 2015;17(6):444–51.

    Article  CAS  PubMed  Google Scholar 

  73. Coutelier M, Hammer MB, Stevanin G, Monin M, Davoine C, Mochel F, et al. Efficacy of exome-targeted capture sequencing to detect mutations in known cerebellar ataxia genes. JAMA Neurol. 2018;75(5):591–9.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Galea CA, Huq A, Lockhart PJ, Tai G, Corben LA, Yiu EM, et al. Compound heterozygous FXN mutations and clinical outcome in Friedreich ataxia. Ann Neurol. 2016;79(3):485–95.

    Article  CAS  PubMed  Google Scholar 

  75. Sánchez-Ferrero E, Coto E, Beetz C, Gaméz J, Corao AI, Díaz M, et al. SPG7 mutational screening in spastic paraplegia patients supports a dominant effect for some mutations and a pathogenic role for p.A510V. Clin Genet. 2013;83(3):257–62.

    Article  PubMed  Google Scholar 

  76. Renaud M, Anheim M, Kamsteeg EJ, Mallaret M, Mochel F, Vermeer S, et al. Autosomal recessive cerebellar ataxia type 3 due to ANO10 mutations: delineation and genotype-phenotype correlation study. JAMA Neurol. 2014;71(10):1305–10.

    Article  PubMed  Google Scholar 

  77. Synofzik M, Schüle R. Overcoming the divide between ataxias and spastic paraplegias: shared phenotypes, genes and pathways. Mov Disord. 2017;32(3):332–45.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orlando Graziani Povoas Barsottini.

Ethics declarations

None.

Disclosures

There is not conflict of interest and funding for this work by the authors and there is not Financial Disclosures for the previous 12 months.

Ethical Compliance Statement Section

The authors confirm that the approval of an institutional review board was not required for this work. We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this work is consistent with those guidelines.

Financial Disclosure

Dr. Pedroso reports no disclosure. Dr. Vale reports no disclosure. Dr. França Jr. reports no disclosure. Dr. Kauffman reports no disclosure. Dr. Teive reports no disclosure. Dr. Barsottini reports no disclosure. Dr. Munhoz reports no disclosure.

Author Role

1) Research project: A. Conception, B. Organization, C. Execution. 2) Data Analysis: A. Design, B. Execution, C. Review and Critique. 3) Manuscript: A. Writing of the first draft, B. Review and Critique. Dr. Pedroso: 1A, 1B, 1C, 2A, 2B, 2C, 3A, 3B. Dr. Vale: 1C, 2B, 2C, 3A, 3B. Dr. França Jr.: 1A, 1B, 1C, 3A, 3B. Dr. Kauffman: 1A, 1B, 1C, 3A, 3B. Dr. Teive: 3A, 3B. Dr. Barsottini: 1A, 1B, 1C, 3A, 3B. Dr. Munhoz: 1A, 1B, 1C, 2A, 2B, 2C, 3A, 3B.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedroso, J.L., Vale, T.C., França Junior, M.C. et al. A Diagnostic Approach to Spastic ataxia Syndromes. Cerebellum 21, 1073–1084 (2022). https://doi.org/10.1007/s12311-021-01345-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-021-01345-5

Keywords

Navigation