Skip to main content
Log in

Language Cerebro-cerebellar Reorganization in Children After Surgery of Right Cerebellar Astrocytoma: a fMRI Study

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Language processing depends on an integrated circuit involving the left supratentorial language areas and the right posterior lateral cerebellar hemisphere (lobule VI, lobule VII, Crus I, and Crus II). Reorganization of the language system after lesions of the cerebral language areas includes also cerebellar relocation. This is the first study assessing functional language reorganization after lesions concerning primarily the cerebellum, using a fMRI paradigm of phonological covert word production task in six children operated for right cerebellar astrocytoma and in 15 typically developing children. We found right cerebellar and left frontal activations in healthy controls and high variability of reorganizational patterns in patients with early right cerebellar lesion. Also lesions not located in the areas typically involved in language tasks (Crus I and Crus II) can cause reorganization between the two hemispheres or hemispheric language reinforcement of the original lateralization. We discuss the role of several variables in determining the reorganizational pattern such as the site, extension, and timing of surgery. No variables revealed as predictors, suggesting that co-occurring influence of other biological and/or pathological factors are not yet demonstrated. Lesions in the postero-lateral cerebellum seem related to less efficient language performances, as an indicator of the system’s functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77. https://doi.org/10.1007/s12311-013-0511-x.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schmahmann JD. The cerebellum and cognition. Neurosci Lett. 2018;688:62–75. https://doi.org/10.1016/j.neulet.2018.07.005.

    Article  CAS  PubMed  Google Scholar 

  3. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501. https://doi.org/10.1016/j.neuroimage.2008.08.039.

    Article  PubMed  Google Scholar 

  4. Marien P, Ackermann H, Adamaszek M, Barwood CH, Beaton A, Desmond J, et al. Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum. 2014;13(3):386–410. https://doi.org/10.1007/s12311-013-0540-5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993;16(11):444–7. https://doi.org/10.1016/0166-2236(93)90071-S.

    Article  CAS  PubMed  Google Scholar 

  6. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79. https://doi.org/10.1093/brain/121.4.561.

    Article  PubMed  Google Scholar 

  7. Knecht S, Drager B, Deppe M, Bobe L, Lohmann H, Floel A, et al. Handedness and hemispheric language dominance in healthy humans. Brain. 2000;123(12):2512–8. https://doi.org/10.1093/brain/123.12.2512.

    Article  PubMed  Google Scholar 

  8. Leiner HC, Leiner AL, Dow RS. Reappraising the cerebellum: what does the hindbrain contribute to the forebrain? Behav Neurosci. 1989;103(5):998–1008. https://doi.org/10.1037/0735-7044.103.5.998.

    Article  CAS  PubMed  Google Scholar 

  9. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97. https://doi.org/10.1093/cercor/bhp135.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Petersen SE, Fox P, Posner M, Mintum M, Raichle M. Positron emission tomographic studies of the cortical anatomy of singleword processing. Nature. 1988;331(6157):585–9. https://doi.org/10.1038/331585a0.

    Article  CAS  PubMed  Google Scholar 

  11. Raichle ME, Fiez JA, Videen TO, MacLeod AM, Pardo JV, Fox PT, et al. Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb Cortex. 1994;4(1):8–26. https://doi.org/10.1093/cercor/4.1.8.

    Article  CAS  PubMed  Google Scholar 

  12. Martin A, Haxby JV, Lalonde FM, Wiggs CL, Ungerleider LG. Discrete cortical regions associated with knowledge of color and knowledge of action. Science. 1995;270(5233):102–5. https://doi.org/10.1126/science.270.5233.102.

    Article  CAS  PubMed  Google Scholar 

  13. Binder JR, Frost JA, Hammeke TA, Cox RW, Rao SM, Prieto T. Human brain language areas identified by functional magnetic resonance imaging. J Neurosci. 1997;17(1):353–62. https://doi.org/10.1523/JNEUROSCI.17-01-00353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Frost JA, Binder JR, Springer JA, Hammeke TA, Bellgowan PS, Rao SM, et al. Language processing is strongly left lateralized in both sexes. Evidence from functional MRI. Brain. 1999;122(2):199–208. https://doi.org/10.1093/brain/122.2.199.

    Article  PubMed  Google Scholar 

  15. Xiang H, Lin C, Ma X, Zhang Z, Bower JM, Weng X, et al. Involvement of the cerebellum in semantic discrimination: an fMRI study. Hum Brain Mapp. 2003;18(3):208–14. https://doi.org/10.1002/hbm.10095.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Desmond JE, Gabrieli JDE, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17(24):9675–85. https://doi.org/10.1523/JNEUROSCI.17-24-09675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hubrich-Ungureanu P, Kaemmerer N, Henn FA, Braus DF. Lateralized organization of the cerebellum in a silent verbal fluency task: a functional magnetic resonance imaging study in healthy volunteers. Neurosci Lett. 2002;319(2):91–4. https://doi.org/10.1016/S0304-3940(01)02566-6.

    Article  CAS  PubMed  Google Scholar 

  18. Jansen A, Flöel A, Van Randenborgh J, Konrad C, Rotte M, Förster AF, et al. Crossed cerebro-cerebellar language dominance. Hum Brain Mapp. 2005;24(3):165–72. https://doi.org/10.1002/hbm.20077.

    Article  PubMed  Google Scholar 

  19. Stoodley CJ, Limperopoulos C. Structure–function relationships in the developing cerebellum: evidence from early-life cerebellar injury and neurodevelopmental disorders. Semin Fetal Neonatal Med. 2016;21(5):356–64. https://doi.org/10.1016/j.siny.2016.04.010.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Murdoch BE. The cerebellum and language: historical perspective and review. Cortex. 2010;46(7):858–68. https://doi.org/10.1016/j.cortex.2009.07.018.

    Article  PubMed  Google Scholar 

  21. Allen G, McColl R, Barnard H, Ringe WK, Fleckenstein J, Cullum CM. Magnetic resonance imaging of cerebellar–prefrontal and cerebellar–parietal functional connectivity. Neuroimage. 2005;28(1):39–48. https://doi.org/10.1016/j.neuroimage.2005.06.013.

    Article  PubMed  Google Scholar 

  22. Jissendi P, Baudry S, Baleriaux D. Diffusion tensor imaging (DTI) and tractography of the cerebellar projections to prefrontal and posterior parietal cortices: a study at 3T. J Neuroradiol. 2008;35(1):42–50. https://doi.org/10.1016/j.neurad.2007.11.001.

    Article  CAS  PubMed  Google Scholar 

  23. O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2009;20(4):953–65. https://doi.org/10.1093/cercor/bhp157.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Salmi J, Pallesen KJ, Neuvonen T, Brattico E, Korvenoja A, Salonen O, et al. Cognitive and motor loops of the human cerebro-cerebellar system. J Cogn Neurosci. 2010;22(11):2663–76. https://doi.org/10.1162/jocn.2009.21382.

    Article  PubMed  Google Scholar 

  25. Riedel MC, Ray KL, Dick AS, Sutherland MT, Hernandez Z, Fox PM, et al. Meta-analytic connectivity and behavioral parcellation of the human cerebellum. Neuroimage. 2015;117:327–42. https://doi.org/10.1016/j.neuroimage.2015.05.008.

    Article  PubMed  Google Scholar 

  26. Weiss-Croft LJ, Baldeweg T. Maturation of language networks in children: a systematic review of 22 years of functional MRI. Neuroimage. 2015;123:269–81. https://doi.org/10.1016/j.neuroimage.2015.07.046.

    Article  PubMed  Google Scholar 

  27. Vargha-Khadem F, O’Gorman A, Watters G. Aphasia and handedness in relation to hemispheric side, age at injury and severity of cerebral lesion during childhood. Brain. 1985;108(3):677–96. https://doi.org/10.1093/brain/108.3.677.

    Article  PubMed  Google Scholar 

  28. Riva D, Cazzaniga L. Late effects of unilateral brain lesions sustained before and after age one. Neuropsychologia. 1986;24(3):423–8. https://doi.org/10.1016/0028-3932(86)90029-1.

    Article  CAS  PubMed  Google Scholar 

  29. Thal DJ, Marchman V, Stiles J, Aram D, Trauner D, Nass R, et al. Early lexical development in children with focal brain injury. Brain Lang. 1991;40(4):491–527. https://doi.org/10.1016/0093-934X(91)90145-Q.

    Article  CAS  PubMed  Google Scholar 

  30. Berl MM, Mayo J, Parks EN, Rosenberger LR, VanMeter J, Ratner NB, et al. Regional differences in the developmental trajectory of lateralization of the language network. Hum Brain Mapp. 2014;35(1):270–84. https://doi.org/10.1002/hbm.22179.

    Article  PubMed  Google Scholar 

  31. Holland SK, Plante E, Byars AW, Strawsburg RH, Schmithorst VJ, Ball WS Jr. Normal fMRI brain activation patterns in children performing a verb generation task. Neuroimage. 2001;14(4):837–43. https://doi.org/10.1006/nimg.2001.0875.

    Article  CAS  PubMed  Google Scholar 

  32. Szaflarski JP, Holland SK, Schmithorst VJ, Byars AW. fMRI study of language lateralization in children and adults. Hum Brain Mapp. 2006;27(3):202–12. https://doi.org/10.1002/hbm.20177.

    Article  PubMed  Google Scholar 

  33. Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123(5):1051–61. https://doi.org/10.1093/brain/123.5.1051.

    Article  PubMed  Google Scholar 

  34. Steinlin M, Imfeld S, Zulauf P, Boltshauser E, Lövblad KO, Ridolfi Luthy A, et al. Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain. 2003;126(9):1998–2008. https://doi.org/10.1093/brain/awg195.

    Article  PubMed  Google Scholar 

  35. Aarsen FK, Van Dongen HR, Paquier PF, Van Mourik M, Catsman-Berrevoets CE. Long-term sequelae in children after cerebellar astrocytoma surgery. Neurology. 2004;62(8):1311–6. https://doi.org/10.1212/01.WNL.0000120549.77188.36.

    Article  CAS  PubMed  Google Scholar 

  36. Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a pediatric population. Brain. 2000;123(5):1041–50. https://doi.org/10.1093/brain/123.5.1041.

    Article  PubMed  Google Scholar 

  37. Ressel V, Wilke M, Lidzba K, Lutzenberger W, Krägeloh-Mann I. Increases in language lateralization in normal children as observed using magnetoencephalography. Brain Lang. 2008;106(3):167–76. https://doi.org/10.1016/j.bandl.2008.01.004.

    Article  PubMed  Google Scholar 

  38. Wang D, Buckner RL, Liu H. Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity. J Neurophysiol. 2013;109(1):46–57. https://doi.org/10.1152/jn.00598.2012.

    Article  CAS  PubMed  Google Scholar 

  39. Uddin LQ, Supekar K, Menon V. Typical and atypical development of functional human brain networks: insights from resting-state FMRI. Front Syst Neurosci. 2010;21:4–21. https://doi.org/10.3389/fnsys.2010.00021.

    Article  Google Scholar 

  40. Limperopoulos C, du Plessis AJ. Disorders of cerebellar growth and development. Curr Opin Pediatr. 2006;18(6):621–7. https://doi.org/10.1097/MOP.0b013e32801080e8.

    Article  PubMed  Google Scholar 

  41. Leggio MG, Silveri MC, Petrosini L, Molinari M. Phonological grouping is specifically affected in cerebellar patients: a verbal fluency study. J Neurol Neurosurg Psychiatry. 2000;69(1):102–6. https://doi.org/10.1136/jnnp.69.1.102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Silveri MC, Leggio MG, Molinari M. The cerebellum contributes to linguistic production: a case of agrammatism of speech following right hemicerebellar lesion. Neurology. 1994;44(11):2047–50. https://doi.org/10.1212/WNL.44.11.2047.

    Article  CAS  PubMed  Google Scholar 

  43. Zettin M, Cappa SF, D'amico A, Rago R, Perino C, Perani D, et al. Agrammatic speech production after a right cerebellar haemorrhage. Neurocase. 1997;3(5):375–80. https://doi.org/10.1080/13554799708411976.

    Article  Google Scholar 

  44. Ackermann H, Mathiak K, Ivry RB. Temporal organization of “internal speech” as a basis for cerebellar modulation of cognitive functions. Behav Cogn Neurosci Rev. 2004;3(1):14–22. https://doi.org/10.1177/1534582304263251.

    Article  PubMed  Google Scholar 

  45. Kalashnikova LA, Zueva YV, Pugacheva OV, Korsakova NK. Cognitive impairments in cerebellar infarcts. Neurosci Behav Physiol. 2005;35(8):773–9. https://doi.org/10.1007/s11055-005-0123-0.

    Article  CAS  PubMed  Google Scholar 

  46. Fabbro F, Moretti R, Bava A. Language impairments in patients with cerebellar lesions. J Neurolinguistics. 2000;13(2–3):173–88. https://doi.org/10.1016/S0911-6044(00)00010-5.

    Article  Google Scholar 

  47. Limperopoulos C, Robertson RL, Sullivan NR, Bassan H, du Plessis AJ. Cerebellar injury in term infants: clinical characteristics, magnetic resonance imaging findings, and outcome. Pediatr Neurol. 2009;41(1):1–8. https://doi.org/10.1016/j.pediatrneurol.2009.02.007.

    Article  PubMed  Google Scholar 

  48. Tavano A, Borgatti R. Evidence for a link among cognition, language and emotion in cerebellar malformations. Cortex. 2010;46(7):907–18. https://doi.org/10.1016/j.cortex.2009.07.017.

    Article  PubMed  Google Scholar 

  49. Scott RB, Stoodley CJ, Anslow P, Paul C, Stein JF, Sugden EM, et al. Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol. 2001;43(10):685–91. https://doi.org/10.1111/j.1469-8749.2001.tb00142.x.

    Article  CAS  PubMed  Google Scholar 

  50. Lidzba K, Wilke M, Staudt M, Krägeloh-Mann I, Grodd W. Reorganization of the cerebro-cerebellar network of language production in patients with congenital left-hemispheric brain lesions. Brain Lang. 2008;106(3):204–10. https://doi.org/10.1016/j.bandl.2007.11.003.

    Article  CAS  PubMed  Google Scholar 

  51. Staudt M, Lidzba K, Grodd W, Wildgruber D, Erb M, Krägeloh-Mann I. Right-hemispheric organization of language following early left-sided brain lesions: functional MRI topography. Neuroimage. 2002;16(4):954–67. https://doi.org/10.1006/nimg.2002.1108.

    Article  PubMed  Google Scholar 

  52. Tillema JM, Byars AW, Jacola LM, Schapiro MB, Schmithorst VJ, Szaflarski JP, et al. Reprint of “Cortical reorganization of language functioning following perinatal left MCA stroke” [Brain and Language 2008; 105: 99–111]. Brain Lang. 2008;106(3):184–94. https://doi.org/10.1016/j.bandl.2008.08.001.

    Article  PubMed  Google Scholar 

  53. Liégeois F, Connelly A, Baldeweg T, Vargha-Khadem F. Speaking with a single cerebral hemisphere: fMRI language organization after hemispherectomy in childhood. Brain Lang. 2008;106(3):195–203. https://doi.org/10.1016/j.bandl.2008.01.010.

    Article  PubMed  Google Scholar 

  54. Liégeois F, Connelly A, Cross JH, Boyd SG, Gadian DG, Vargha-Khadem F, et al. Language reorganization in children with early-onset lesions of the left hemisphere: an fMRI study. Brain. 2004;127(6):1229–36. https://doi.org/10.1093/brain/awh159.

    Article  PubMed  Google Scholar 

  55. Makris N, Schlerf JE, Hodge SM, Haselgrove C, Albaugh MD, Seidman LJ, et al. MRI-based surface-assisted parcellation of human cerebellar cortex: an anatomically specified method with estimate of reliability. Neuroimage. 2005;25(4):1146–60. https://doi.org/10.1016/j.neuroimage.2004.12.056.

    Article  PubMed  Google Scholar 

  56. Gelinas JN, Fitzpatrick KP, Kim HC, Bjornson BH. Cerebellar language mapping and cerebral language dominance in pediatric epilepsy surgery patients. Neuroimage Clin. 2014;6:296–306. https://doi.org/10.1016/j.nicl.2014.06.016.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Carlsson G, Hugdahl K, Uvebrant P, Wiklund LM, von Wendt L. Pathological left-handedness revisited: dichotic listening in children with left vs. right congenital hemiplegia. Neuropsychologia. 1992;30(5):471–81. https://doi.org/10.1016/0028-3932(92)90094-3.

    Article  CAS  PubMed  Google Scholar 

  58. Isaacs E, Christie D, Vargha-Khadem F, Mishkin M. Effects of hemispheric side of injury, age at injury and presence of seizure disorder on functional ear and hand asymmetries in hemiplegic children. Neuropsychologia. 1996;34(2):127–37. https://doi.org/10.1016/0028-3932(95)00089-5.

    Article  CAS  PubMed  Google Scholar 

  59. Brizzolara D, Pecini C, Brovedani P, Ferretti G, Cipriani P, Cioni G. Timing and type of congenital brain lesion determine different patterns of language lateralization in hemiplegic children. Neuropsychologia. 2002;40(6):620–32. https://doi.org/10.1016/S0028-3932(01)00158-0.

    Article  PubMed  Google Scholar 

  60. Chilosi AM, Pecini C, Cipriani P, Brovedani P, Brizzolara D, Ferretti G, et al. Atypical language lateralization and early linguistic development in children with focal brain lesions. Dev Med Child Neurol. 2005;47(11):725–30. https://doi.org/10.1017/S0012162205001532.

    Article  CAS  PubMed  Google Scholar 

  61. Bulgheroni S, Franceschetti S, Vago C, Usilla A, Pantaleoni C, D’Arrigo S, et al. Verbal dichotic listening performance and its relationship with EEG features in benign childhood epilepsy with centrotemporal spikes. Epilepsy Res. 2008;79(1):31–8. https://doi.org/10.1016/j.eplepsyres.2007.12.016.

    Article  PubMed  Google Scholar 

  62. Muller RA, Behen ME, Rothermel RD, Muzik O, Chakraborty PK, Chugani HT. Brain organization for language in children, adolescents, and adults with left hemisphere lesion: a PET study. Prog Neuro-Psychopharmacol Biol Psychiatry. 1999;23(4):657–68. https://doi.org/10.1016/S0278-5846(99)00024-X.

    Article  CAS  Google Scholar 

  63. Lazar RM, Marshall RS, Pile-Spellman J, Duong HC, Mohr JP, Young WL, et al. Interhemispheric transfer of language in patients with left frontal cerebral arteriovenous malformation. Neuropsychologia. 2000;38(10):1325–32. https://doi.org/10.1016/S0028-3932(00)00054-3.

    Article  CAS  PubMed  Google Scholar 

  64. Guzzetta A, Pecini C, Biagi L, Tosetti M, Brizzolara D, Chilosi A, et al. Language organisation in left perinatal stroke. Neuropediatrics. 2008;39(3):157–63. https://doi.org/10.1055/s-0028-1085465.

    Article  CAS  PubMed  Google Scholar 

  65. Raja Beharelle A, Dick AS, Josse G, Solodkin A, Huttenlocher PR, Levine SC, et al. Left hemisphere regions are critical for language in the face of early left focal brain injury. Brain. 2010;133(6):1707–16. https://doi.org/10.1093/brain/awq104.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lidzba K, de Haan B, Wilke M, Krägeloh-Mann I, Staudt M. Lesion characteristics driving right-hemispheric language reorganization in congenital left-hemispheric brain damage. Brain Lang. 2017;173:1–9. https://doi.org/10.1016/j.bandl.2017.04.006.

    Article  PubMed  Google Scholar 

  67. Connor LT, DeShazo Braby T, Snyder AZ, Lewis C, Blasi V, Corbetta M. Cerebellar activity switches hemispheres with cerebral recovery in aphasia. Neuropsychologia. 2006;44(2):171–7. https://doi.org/10.1016/j.neuropsychologia.2005.05.019.

    Article  PubMed  Google Scholar 

  68. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113. https://doi.org/10.1016/0028-3932(71)90067-4.

    Article  CAS  PubMed  Google Scholar 

  69. Wechsler D. Wechsler intelligence scale for children—third edition. San Antonio: The Psychological Corporation; 1991.

    Google Scholar 

  70. Orsini A, Picone L. WISC-III: Contributo alla taratura italiana. Firenze: Organizzazioni Speciali; 2006.

    Google Scholar 

  71. Riva D, Nichelli F, Devoti M. Developmental aspects of verbal fluency and confrontation naming in children. Brain Lang. 2000;71(2):267–84. https://doi.org/10.1006/brln.1999.2166.

    Article  CAS  PubMed  Google Scholar 

  72. Schmahmann JD, Doyon J, Petrides M, Evans AC, Toga AW. MRI atlas of the human cerebellum. Academic Press; 2000.

  73. Goebel R, Esposito F, Formisano E. Analysis of functional image analysis contest (FIAC) data with Brainvoyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum Brain Mapp. 2006;27(5):392–401. https://doi.org/10.1002/hbm.20249.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Turner R, Howseman A, Rees GE, Josephs O, Friston K. Functional magnetic resonance imaging of the human brain: data acquisition and analysis. Exp Brain Res. 1998;123(1–2):5–12. https://doi.org/10.1007/s002210050538.

    Article  CAS  PubMed  Google Scholar 

  75. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15(1):273–89. https://doi.org/10.1006/nimg.2001.0978.

    Article  CAS  PubMed  Google Scholar 

  76. Wagner S, Sebastian A, Lieb K, Tüscher O, Tadić A. A coordinate-based ALE functional MRI meta-analysis of brain activation during verbal fluency tasks in healthy control subjects. BMC Neurosci. 2014;15:15–9. https://doi.org/10.1186/1471-2202-15-19.

    Article  Google Scholar 

  77. Gaillard WD, Berl MM, Moore EN, Ritzl EK, Rosenberger LR, Weinstein SL, et al. Atypical language in lesional and nonlesional complex partial epilepsy. Neurology. 2007;69(18):1761–71. https://doi.org/10.1212/01.wnl.0000289650.48830.1a.

    Article  CAS  PubMed  Google Scholar 

  78. IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.

  79. Everts R, Lidzba K, Wilke M, Kiefer C, Mordasini M, Schroth G, et al. Strengthening of laterality of verbal and visuospatial functions during childhood and adolescence. Hum Brain Mapp. 2009;30(2):473–83. https://doi.org/10.1002/hbm.20523.

    Article  PubMed  Google Scholar 

  80. Low LK, Cheng HJ. Axon pruning: an essential step underlying the developmental plasticity of neuronal connections. Philos Trans R Soc Lond B Biol Sci. 2006;361(1473):1531–44. https://doi.org/10.1098/rstb.2006.1883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, Rilling JK, et al. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. Neuroimage. 2010;49(3):2045–52. https://doi.org/10.1016/j.neuroimage.2009.10.045.

    Article  CAS  PubMed  Google Scholar 

  82. Ahmad Z, Balsamo LM, Sachs BC, Xu B, Gaillard WD. Auditory comprehension of language in young children: neural networks identified with fMRI. Neurology. 2003;60(10):1598–605. https://doi.org/10.1212/01.WNL.0000059865.32155.86.

    Article  CAS  PubMed  Google Scholar 

  83. Kotilahti K, Nissilä I, Näsi T, Lipiäinen L, Noponen T, Meriläinen P, et al. Hemodynamic responses to speech and music in newborn infants. Hum Brain Mapp. 2010;31(4):595–603. https://doi.org/10.1002/hbm.20890.

    Article  PubMed  Google Scholar 

  84. Wood AG, Harvey AS, Wellard RM, Abbott DF, Anderson V, Kean M, et al. Language cortex activation in normal children. Neurology. 2004;63(6):1035–44. https://doi.org/10.1212/01.WNL.0000140707.61952.CA.

    Article  CAS  PubMed  Google Scholar 

  85. Riva D, Pantaleoni C, Milani N, Devoti M. Late sequelae of right versus left hemispheric lesions. In: Martins IP, Castro-Caldas A, van Dongen HR, van Hout A, editors. Acquired aphasia in children: acquisition and breakdown of language in the developing brain. Dordrecht: Springer; 1991. p. 213–24.

    Chapter  Google Scholar 

  86. Kadis DS, Iida K, Kerr EN, Logan WJ, Mcandrews MP, Ochi A, et al. Intrahemispheric reorganization of language in children with medically intractable epilepsy of the left hemisphere. J Int Neuropsychol Soc. 2007;13(3):505–16. https://doi.org/10.1017/S1355617707070397.

    Article  PubMed  Google Scholar 

  87. Cho NS, Peck KK, Zhang Z, Holodny AI. Paradoxical activation in the cerebellum during language fMRI in patients with brain tumors: possible explanations based on neurovascular uncoupling and functional reorganization. Cerebellum. 2018;17(3):286–93. https://doi.org/10.1007/s12311-017-0902-5.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Richter S, Gerwig M, Aslan B, Wilhelm H, Schoch B, Dimitrova A, et al. Cognitive functions in patients with MR-defined chronic focal cerebellar lesions. J Neurol. 2007;254(9):1193–203. https://doi.org/10.1007/s00415-006-0500-9.

    Article  PubMed  Google Scholar 

  89. Frank B, Schoch B, Richter S, Frings M, Karnath HO, Timmann D. Cerebellar lesion studies of cognitive function in children and adolescents—limitations and negative findings. Cerebellum. 2007;6(3):242–53. https://doi.org/10.1080/14734220701297432.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the children and their parents for participating in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Bulgheroni.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained by parents for all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riva, D., Taddei, M., Ghielmetti, F. et al. Language Cerebro-cerebellar Reorganization in Children After Surgery of Right Cerebellar Astrocytoma: a fMRI Study. Cerebellum 18, 791–806 (2019). https://doi.org/10.1007/s12311-019-01039-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-019-01039-z

Keywords

Navigation