Skip to main content
Log in

Cerebellum—from J. E. Purkyně up to Contemporary Research

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Jan. Evangelista Purkyně, the most famous among Czech physiologists, was the first who identified and described the largest nerve cells in the cerebellum. The most distinguished researchers of the nervous system then recommended naming these neurons Purkinje cells in his honor. Through experiments by Purkinje and his followers, the function of the cerebellum was properly attributed to the precision of motor movements and skills. This traditional concept was valid until early 1990s, when it was readjusted and replenished with new and important findings. It was discovered that the cerebellar cortex contains more neurons than the cerebral cortex and shortly thereafter was gradually revealed that such enormous numbers of neural cells are not without impact on brain functions. It was shown that the cerebellum, in addition to its traditional role, also participates in higher nervous activity. These new findings were obtained thanks to the introduction of modern methods of examination into the clinical praxis, and experimental procedures using animal models of cerebellar disorders described in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Druga R. Purkinje cells of the cerebellum. In: Trávníčková E. editor. Jan Evangelista Purkyně, life and work. Prague: Avicenum; 1986. p. 255–61 (in Czech).

    Google Scholar 

  2. y Cajal SR. Histologie du systéme nerveux de l’homme et des vertébrés. Paris, T. II. Ed. A Maloine, 1911. p. 1–993.

  3. Friede RL. The relationship of body size, nerve cell size, axon length, and glial density in the cerebellum. Proc Natl Acad Sci U S A. 1963;49:187–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eccles JC, Ito M, Szenthagothai J. The cerebellum as a neuronal machine. Berlin, Germany: Springer; 1967.

    Book  Google Scholar 

  5. Szentagothai J. Structure-functional considerations of the cerebellar neuron network. Proc IEEE. 1968;56:6960–8.

    Article  Google Scholar 

  6. Ito M. Neurophysiological basis of the cerebellar motor control system. Int J Neurol. 1970;7:162–76.

    CAS  PubMed  Google Scholar 

  7. Ito M. Neural design of the cerebellar motor system. Brain Res. 1972;40:81–4.

    Article  CAS  PubMed  Google Scholar 

  8. Ito M. The cerebellum and neural control. New York, 1984.

  9. Palay SL, Chan-Palay V. Cerebellar cortex: cytology and organization. Springer, 1974.

  10. Glickstein M. The cerebellum and motor learning. Cur Opin Neurobiol. 1992;2:802–6.

    Article  CAS  Google Scholar 

  11. Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4:174–98.

    Article  CAS  PubMed  Google Scholar 

  12. Schmahmann JD, Pandya DN. The cerebellar system. Int Rev Neurobiol. 1997;41:31–60.

    Article  CAS  PubMed  Google Scholar 

  13. Middleton FA, Strik PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21:700–12.

    CAS  PubMed  Google Scholar 

  14. Ito M. Cerebellar circuitry as a neuronal machine. Progress Neurobiol. 2006;78:272–303.

    Article  Google Scholar 

  15. Haines DE, Dietrichs E, Mihailoff GA, McDonald EF. The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol. 1997;41:83–107.

    Article  CAS  PubMed  Google Scholar 

  16. Onat F, Cavdar S. Cerebellar connections: hypothalamus. Cerebellum. 2003;2:263–9.

    Article  PubMed  Google Scholar 

  17. Manto M, Lorivel T. Cognitive repercussions of hereditary cerebellar disorders. Cortex. 2011;47:81–100.

    Article  PubMed  Google Scholar 

  18. Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80:807–15.

    Article  CAS  PubMed  Google Scholar 

  19. Andersen BB, Korbo L, Pakkenberg B. A quantitative study of the human cerebellum with unbiased stereological techniques. J Comp Neurol. 1992;326:549–60.

    Article  CAS  PubMed  Google Scholar 

  20. Herculano-Houzel S, Mota B, Lent R. Cellular scaling rules for rodent brains. Proc Natl Acad Sci U S A. 2006;103:12138–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Herculano-Houzel S, Collins CE, Wong P, Kaas JH. Cellular scaling rules for primate brains. Proc Natl Acad Sci U S A. 2007;104:3562–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Azevedo F, Carvalho L, Grinberg L, Farfel JR, Ferretti R, Leite R, Jacob Filho W, Lent R, Herculano-Houzel S. Equal numbers of neuronal and non-neuronal cells make the human brain a scaled-up primate brain. J Comp Neurol. 2009;513:532–41.

    Article  PubMed  Google Scholar 

  23. Sarko DK, Catania KC, Leitch DB, Kaas JH, Herculano-Houzel S. Cellular scaling rules of insectivore brains. Front Neuroanat. 2009;3:3–12.

    Article  Google Scholar 

  24. Herculano-Houzel S. Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat. 2010;4:1–8.

    Google Scholar 

  25. Zhu JN, Wang JJ. The cerebellum in feeding control: possible function and mechanism. Cell Mol Neurobiol. 2008;28:469–78.

    Article  PubMed  Google Scholar 

  26. Mordel J, Karnas D, Pévet P, Isope P, Challet E, Meissl H. The output signal of Purkinje cells of the cerebellum and circadian rhythmicity. PLoS One. 2013;8:e58457. doi:10.1371/journal.pone.0058457. Epub 2013 Mar 7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schutter DJL. Human cerebellum in motivation and emotion. In: Manto M, DL G, JD S, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. New York: Springer Science + Business Media; 2013. p. 1499–52.

    Google Scholar 

  28. van Dun K, De Witte E, Van Daele W, Van Hecke W, Manto M, Mariën P. Atypical cerebral and cerebellar language organisation: a case study. Cerebellum Ataxias. 2015;2:18.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kandel ER, Schwartz JH, Jessel TM. Principles of neural science. 4th ed. New York: McGraw-Hi; 2000.

    Google Scholar 

  30. Manto M. Mechanisms of human cerebellar dysmetria: experimental evidence and current conceptual bases. J Neuroeng Rehabil. 2009;6:10. doi:10.1186/1743-0003-6-10.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Manto M, Marmolino D. Cerebellar ataxias. Curr Opin Neurol. 2009;22(4):419–29.

    Article  PubMed  Google Scholar 

  32. Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, Mariën P, Nowak DA, Schmahmann JD, Serrao M, Steiner KM, Strupp M, Tilikete C, Timmann D, van Dun K. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum. 2016;15:369–91.

    Article  PubMed  Google Scholar 

  33. Schmahmann JD, Sherman JC. Cerebellar cognitive affective syndrome. Int Rev Neurobiol. 1997;41:433–40.

    Article  CAS  PubMed  Google Scholar 

  34. Andreasen NC, Pierson R. The role of the cerebellum in schizophrenia. Biol Psychiatry. 2008;64:81–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fatemi SH, Aldinger KA, Ashwood P, Bauman L, Blaha CD, Blatt GJ. Consensus paper: pathological role of the cerebellum in autism. Cerebellum. 2012;11:777–807.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Záhlava J. The cerebellum. In: Mysliveček J. editor. Pathological Physiology of the nervous system. Charles University Prague 1994; 150–55. (in Czech).

  37. Kishore A, Meunier S, Popa T. Cerebellar influence on motor cortex plasticity: behavioral implications for Parkinson’s disease. Front Neurol. 2014;5:1–8.

    Google Scholar 

  38. Kim SG, Ugurbil K, Strick PL. Activation of a cerebellar output nucleus during cognitive processing. Science. 1994;265:949–51.

    Article  CAS  PubMed  Google Scholar 

  39. Van Mier HI, Tempel LW, Pertmutter JS, et al. Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice. J Neurophysiol. 1998;80:2177–99.

    CAS  PubMed  Google Scholar 

  40. Van Mier HI, Petersen SE. Role of the cerebellum in motor cognition. Ann N Y Acad Sci. 2002;978:334–53.

    Article  PubMed  Google Scholar 

  41. Sharma P, Mazumdar B, Chatterjee P. Cerebellar hypermetabolism on 18F-FDG PET/CT with normal MRI in a case of paraneoplastic cerebellar degeneration with negative antibodies. Rev Esp Med Nucl Imagen Mol. 2015;34:79–80.

    CAS  PubMed  Google Scholar 

  42. Akita K, Arai S. The ataxic Syrian hamster: an animal model homologous to the pcd mutant mouse? Cerebellum. 2009;8:202–10.

    Article  PubMed  Google Scholar 

  43. Manto M, Marmolino D. Animal models of human cerebellar ataxias: a cornerstone for the therapies of the twenty-first century. Cerebellum. 2009;8:137–54.

    Article  PubMed  Google Scholar 

  44. Ebner TJ, Chen G. Tottering mouse. In: Manto M, DL G, JD S, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. New York: Springer Science + Business Media; 2013. p. 1521–40.

    Chapter  Google Scholar 

  45. Bickford P. Motor learning deficits in aged rats are correlated with loss of cerebellar noradrenergic function. Brain Res. 1993;620:133–8.

    Article  CAS  PubMed  Google Scholar 

  46. Lalonde R, Joyal CC, Coté C, Botez MI. Simultaneous visual discrimination learning in Lurcher mutant mice. Brain Res. 1993;618:19–23.

    Article  CAS  PubMed  Google Scholar 

  47. Lalonde R, Joyal CC, Guastavino JM, Botez MI. Hole poking and motor coordination in Lurcher mutant mice. Physiol Behav. 1993;54:41–4.

    Article  CAS  PubMed  Google Scholar 

  48. Lalonde R, Filali M, Bensoula AN, Lestienne F. Sensorimotor learning in three cerebellar mutant mice. Neurobiol Learn Mem. 1996;65:113–20.

    Article  CAS  PubMed  Google Scholar 

  49. Cendelín J, Korelusová I, Vožeh F. The effect of repeated rotarod training on motor skills and spatial learning ability in Lurcher mutant mice. Behav Brain Res. 2008;189:65–74.

    Article  PubMed  Google Scholar 

  50. Hilber P, Caston J. Motor skills and motor learning in Lurcher mutant mice during aging. Neuroscience. 2001;102:615–23.

    Article  CAS  PubMed  Google Scholar 

  51. Křížková A, Vožeh F. Development of early motor learning and topical motor skills in a model of cerebellar degeneration. Behav Brain Res. 2004;150:65–72.

  52. Thullier F, Lalonde R, Cousin X. Neurobehavioral evaluation of lurcher mutant mice during ontogeny. Dev Brain Res. 1997;100:22–8.

    Article  CAS  Google Scholar 

  53. Vožeh F, Caddy KWT, Mysliveček J, et al. Some characteristics of early learning in cerebellar degeneration model. Studia Psychol. 1997;39:279–81.

    Google Scholar 

  54. Vožeh F, Cendelín J, Motáňová A. The development of different types of learning in cerebellar degeneration model. Homestasis. 1999;39:248–50.

    Google Scholar 

  55. Vožeh F, Cendelín J, Štenglová V. The development of spatial learning in a model of olivocerebellar degeneration. Homestasis. 2001;41:64–6.

    Google Scholar 

  56. Cendelín J, Vožeh F. Lurcher mouse. In: Manto M, DL G, JD S, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. New York: Springer Science + Business Media; 2013. p. 1499–520.

    Chapter  Google Scholar 

  57. Purkartová Z, Vožeh F. Cerebellar degeneration in Lurcher mice under confocal laser scanning microscope. Microsc Res Tech. 2013;76:545–51.

    Article  PubMed  Google Scholar 

  58. Cendelín J. From mice to men: lessons from mutant ataxic mice. Cerebellum Ataxias. 2014;1:1–21.

    Article  Google Scholar 

  59. Koeppen AH. The pathogenesis of spinocerebellar ataxia. Cerebellum. 2005;4:62–73.

    Article  CAS  PubMed  Google Scholar 

  60. Yamada M, Sato T, Tsuji S, et al. CAG repeat disorder models and human neuropathology: similarities and differences. Acta Neuropathol. 2008;115:71–86.

    Article  CAS  PubMed  Google Scholar 

  61. Fan HC, Ho LI, Chi CS, Chen SJ, Peng GS, Chan TM, Lin SZ, Harn HJ. Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant. 2014;23:441–58.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The preparation of this article was supported by the Charles University Research Fund (project number P36), the Faculty of Medicine in Pilsen and by the National Sustainability Program I (NPU I) Nr. LO1503 provided by the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Vožeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vožeh, F. Cerebellum—from J. E. Purkyně up to Contemporary Research. Cerebellum 16, 691–694 (2017). https://doi.org/10.1007/s12311-016-0835-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-016-0835-4

Keywords

Navigation