Skip to main content

Abstract

Lurcher mutant mice represent one of the frequently used mouse models of the olivocerebellar degeneration. It is caused by a mutation in the δ2 glutamate receptor subunit encoding gene. The gain of function mutation changes the receptor into a leaky membrane channel leading to chronic depolarization of the cells expressing the receptor. Heterozygous Lurcher mice suffer from virtually complete postnatal loss of cerebellar Purkinje cells and reduction of granule, stellate and basket cells, and inferior olive neurons and relatively mild changes in the deep cerebellar nuclei. The death of Purkinje cells is a primary effect of the mutation and it shows features of apoptosis, autophagy, and necrosis. Extinction of the granule, stellate and basket cells, and inferior olive neurons is a target-related cell death. Lurcher mice display neurochemical and metabolic changes, abnormalities in the neurotransmitter and receptor systems, endocrine and immune abnormalities, and multiple behavioral deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M (1993) Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun 197:1267–1276

    Article  PubMed  CAS  Google Scholar 

  • Bakalian A, Kopmels B, Messer A, Fradelizi D, Delhaye-Bouchaud N, Wollman E, Mariani J (1992) Peripheral macrophage abnormalities in mutant mice with spinocerebellar degeneration. Res Immunol 143:129–139

    Article  PubMed  CAS  Google Scholar 

  • Bäurle J, Kranda K, Frischmuth S (2006) On the variety of cell death pathways in the Lurcher mutant mouse. Acta Neuropathol 112:691–702

    Article  PubMed  Google Scholar 

  • Belzung C, Chapillon P, Lalonde R (2001) The effects of the lurcher mutation on object localization, T-maze discrimination, and radial arm maze tasks. Behav Genet 31:151–155

    Article  PubMed  CAS  Google Scholar 

  • Beranová M, Manďáková P, Šíma P, Slípka J, Vožeh F, Kočová J, Červinková M, Sýkora J (2002) The morphology of the adrenal gland and the lymph organs is impaired in the neurodeficient Lurcher mutant mice. Acta Vet Brno 71:23–28

    Article  Google Scholar 

  • Caddy KWT, Biscoe TJ (1979) Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos Trans R Soc Lond B Biol Sci 287:167–201

    Article  PubMed  CAS  Google Scholar 

  • Caddy KWT, Vožeh F (1997) The effect of 3-acetylpyridine on olivary neuron degeneration in Lurcher mutant and wild type mice. Eur J Pharmacol 330:139–142

    Article  PubMed  CAS  Google Scholar 

  • Caston J, Vasseur F, Stelz T, Chianale C, Delhaye-Bouchaud N, Mariani J (1995) Differential roles of cerebellar cortex and deep cerebellar nuclei in the learning of the equilibrium behavior: studies in intact and cerebellectomized lurcher mutant mice. Dev Brain Res 86:311–316

    Article  CAS  Google Scholar 

  • Caston J, Chianale C, Delhaye-Bouchaud N, Mariani J (1998) Role of the cerebellum in exploration behavior. Brain Res 808:232–237

    Article  PubMed  CAS  Google Scholar 

  • Caston J, Devulder B, Jouen F, Lalonde R, Delhaye-Bouchaud N, Mariani J (1999) Role of an enriched environment on the restoration of behavioral deficits in Lurcher mutant mice. Develop Psychobiol 35:291–303

    Article  CAS  Google Scholar 

  • Cendelín J, Korelusová I, Vožeh F (2008) The effect of repeated rotarod training on motor skills and spatial learning ability in Lurcher mutant mice. Behav Brain Res 189:65–74

    Article  PubMed  Google Scholar 

  • Cendelín J, Korelusová I, Vožeh F (2009a) A preliminary study of solid embryonic cerebellar graft survival in adult B6CBA Lurcher mutant and wild type mice. Anat Rec 292:1986–1992

    Article  Google Scholar 

  • Cendelín J, Korelusová I, Vožeh F (2009b) The effect of cerebellar transplantation and enforced physical activity on motor skills and spatial learning in adult Lurcher mutant mice. Cerebellum 8:35–45

    Article  PubMed  Google Scholar 

  • Cendelín J, Voller J, Vožeh F (2010) Ataxic gait analysis in a mouse model of the olivocerebellar degeneration. Behav Brain Res 210:8–15

    Article  PubMed  Google Scholar 

  • Chang B, Hawes NL, Hurd RE, Davisson T, Nusinowitz S, Heckenlively JR (2002) Retinal degeneration mutants in the mouse. Vis Res 42:517–525

    Article  PubMed  CAS  Google Scholar 

  • Cheng SS, Heintz N (1997) Massive loss of mid- and hindbrain neurons during embryonic development of homozygous Lurcher mice. J Neurosci 17:2400–2407

    PubMed  CAS  Google Scholar 

  • De Jager PL, Zuo J, Cook SA, Heintz N (1997) A new allele of the lurcher gene, lurcherJ. Mamm Genome 8:647–650

    Article  PubMed  Google Scholar 

  • Doughty ML, De Jager PL, Korsmeyer SJ, Heintz N (2000) Neurodegeneration in Lurcher mice occurs via multiple cell death pathways. J Neurosci 20:3687–3694

    PubMed  CAS  Google Scholar 

  • Duffin CA, McFarland R, Sarna JR, Vogel MW, Armstrong CL (2010) Heat shock protein 25 expression and preferential Purkinje cell survival in the lurcher mutant mouse cerebellum. J Comp Neurol 518:1892–1907

    Article  PubMed  CAS  Google Scholar 

  • Dumesnil-Bousez N, Sotelo C (1992) Early development of the Lurcher cerebellum: Purkinje cell alterations and impairment of synaptogenesis. J Neurocytol 21:506–529

    Article  PubMed  CAS  Google Scholar 

  • Dumesnil-Bousez N, Sotelo C (1993) Partial reconstruction of the adult Lurcher cerebellar circuitry by neural grafting. Neuroscience 55:1–21

    Article  PubMed  CAS  Google Scholar 

  • Dusart I, Guenet JL, Sotelo C (2006) Purkinje cell death: differences between developmental cell death and neurodegenerative death in mutant mice. Cerebellum 5:163–173

    Article  PubMed  Google Scholar 

  • Fisher M (1984) Neuronal influence on glial enzyme expression: evidence from mutant mouse cerebella. Proc Natl Acad Sci USA 81:4414–4418

    Article  PubMed  CAS  Google Scholar 

  • Fortier P, Smith AM, Rossignol S (1987) Locomotor deficits in the cerebellar mutant mouse, Lurcher. Exp Brain Res 66:271–286

    Article  PubMed  CAS  Google Scholar 

  • Frederic F, Chautard T, Brochard R, Chianale C, Wollman E, Oliver C, Delhaye-Bouchaud N, Mariani J (1997) Enhanced endocrine response to novel environment stress and endotoxin in Lurcher mutant mice. Neuroendocrinology 66:341–347

    Article  PubMed  CAS  Google Scholar 

  • Frischmuth S, Kranda K, Bäurle J (2006) Translocation of cytochrome c during cerebellar degeneration in Lurcher and weaver mutant mice. Brain Res Bull 71:139–148

    Article  PubMed  CAS  Google Scholar 

  • Garin N, Hornung JP, Escher G (2002) Distribution of postsynaptic GABAA receptor aggregates in the deep cerebellar nuclei of normal and mutant mice. J Comp Neurol 447:210–217

    Article  PubMed  CAS  Google Scholar 

  • Heckroth JA (1994a) A quantitative morphological analysis of the cerebellar nuclei in normal and lurcher mutant mice. I. Morphology and cell number. J Comp Neurol 343:173–182

    Article  PubMed  CAS  Google Scholar 

  • Heckroth JA (1994b) A quantitative morphological analysis of the cerebellar nuclei in normal and lurcher mutant mice. II. Volumetric changes in cytological components. J Comp Neurol 343:182–192

    Google Scholar 

  • Heckroth JA, Hobart NJH, Summers D (1998) Transplanted neurons alter the course of neurodegenerative disease in Lurcher mutant mice. Exp Neurol 154:336–352

    Article  PubMed  CAS  Google Scholar 

  • Hilber P, Caston J (2001) Motor skills and motor learning in Lurcher mutant mice during aging. Neuroscience 102:615–623

    Article  PubMed  CAS  Google Scholar 

  • Hilber P, Jouen F, Delhaye-Bouchaud N, Mariani J, Caston J (1998) Differential roles of cerebellar cortex and deep cerebellar nuclei in learning and retention of a spatial task: studies in intact and cerebellectomized lurcher mutant mice. Behav Genet 28:299–308

    Article  PubMed  CAS  Google Scholar 

  • Hilber P, Lalonde R, Caston J (1999) An unsteady platform test for measuring static equilibrium in mice. J Neurosci Meth 88:201–205

    Article  CAS  Google Scholar 

  • Hilber P, Lorivel T, Delarue C, Caston J (2004) Stress and anxious-related behaviors in Lurcher mutant mice. Brain Res 1003:108–112

    Article  PubMed  CAS  Google Scholar 

  • Jones J, Jaramillo-Merchán J, Bueno C, Pastor D, Viso-León M, Martínez S (2010) Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis 40:415–423

    Article  PubMed  Google Scholar 

  • Kohda K, Wang Y, Yuzaki M (2000) Mutation of a glutamate receptor motif reveals its role in gating and delta2 receptor channel properties. Nat Neurosci 3:315–322

    Article  PubMed  CAS  Google Scholar 

  • Kopmels B, Wollman EE, Guastavino JM, Delhaye-Bouchaud N, Fradelizi D, Mariani J (1990) Interleukin-1 hyperproduction by in vitro activated peripheral macrophages from cerebellar mutant mice. J Neurochem 55:1980–1985

    Article  PubMed  CAS  Google Scholar 

  • Křížková A, Vožeh F (2004) Development of early motor learning and topical motor skills in a model of cerebellar degeneration. Behav Brain Res 150:65–72

    Article  PubMed  Google Scholar 

  • Lalonde R (1994) Motor learning in Lurcher mutant mice. Brain Res 639:351–353

    Article  PubMed  CAS  Google Scholar 

  • Lalonde R (1998) Immobility responses in Lurcher mutant mice. Behav Genet 28:309–314

    Article  PubMed  CAS  Google Scholar 

  • Lalonde R, Strazielle C (2007) Spontaneous and induced mouse mutations with cerebellar dysfunctions: Behavior and neurochemistry. Brain Res 1140:51–74

    Article  PubMed  CAS  Google Scholar 

  • Lalonde R, Thifault S (1994) Absence of an association between motor coordination and spatial orientation in lurcher mutant mice. Behav Genet 24:497–501

    Article  PubMed  CAS  Google Scholar 

  • Lalonde R, Lamarre Y, Smith AM, Botez MI (1986) Spontaneous alternation and habituation in Lurcher mutant mice. Brain Res 362:161–164

    Article  PubMed  CAS  Google Scholar 

  • Lalonde R, Lamarre Y, Smith AM (1988) Does the mutant mouse Lurcher have deficits in spatially oriented behaviours? Brain Res 455:24–30

    Article  PubMed  CAS  Google Scholar 

  • Lalonde R, Botez MI, Joyal CC, Caumartin M (1992) Motor abnormalities in Lurcher mutant mice. Physiol Behav 51:523–525

    Article  PubMed  CAS  Google Scholar 

  • Lalonde R, Joyal CC, Cote C, Botez MI (1993a) Simultaneous visual discrimination learning in lurcher mutant mice. Brain Res 618:19–22

    Article  PubMed  CAS  Google Scholar 

  • Lalonde R, Joyal CC, Guastavino JM, Botez MI (1993b) Hole poking and motor coordination in Lurcher mutant mice. Physiol Behav 54:41–44

    Article  PubMed  CAS  Google Scholar 

  • Lalonde R, Filali M, Bensoula AN, Lestienne F (1996a) Sensorimotor learning in three cerebellar mutant mice. Neurobiol Learn Mem 65:113–120

    Article  PubMed  CAS  Google Scholar 

  • Lalonde R, Filali M, Bensoula AN, Monnier C, Guastavino JM (1996b) Spatial learning in a Z-maze by cerebellar mutant mice. Physiol Behav 59:83–86

    Article  PubMed  CAS  Google Scholar 

  • Landsend AS, Amiry-Moghaddam M, Matsubara A, Bergersen L, Usami S, Wenthold RJ, Ottersen O (1997) Differential localization of d glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci 15:834–842

    Google Scholar 

  • Le Marec N, Lalonde R (2000) Treadmill performance of mice with cerebellar lesions: 2. Lurcher mutant mice. Neurobiol Learn Mem 73:195–206

    Article  PubMed  Google Scholar 

  • Le Marec N, Caston J, Lalonde R (1997) Impaired motor skills on static and mobile beams in lurcher mutant mice. Exp Brain Res 116:131–138

    Article  PubMed  Google Scholar 

  • Le Marec N, Hébert C, Botez MI, Botez-Marquard T, Marchand L, Reader TA (1999) Serotonin innervation of Lurcher mutant mice: basic data and manipulation with a combination of amantadine, thiamine and L-tryptophan. Brain Res Bull 48:195–201

    Article  PubMed  Google Scholar 

  • Le Marec N, Asea AR, Botez-Marquard T, Marchand L, Reader TA, Lalonde R (2001) Behavioral and biochemical effects of L-tryptophan and buspirone in a model of cerebellar atrophy. Pharmacol Biochem Behav 69:333–342

    Article  PubMed  Google Scholar 

  • Linnemann C, Sultan F, Pedroarena CM, Schwarz C, Thier P (2004) Lurcher mice exhibit potentiation of GABAA-receptor–mediated conductance in cerebellar nuclei neurons in close temporal relationship to Purkinje cell death. J Neurophysiol 91:1102–1107

    Article  PubMed  CAS  Google Scholar 

  • Lorivel T, Hilber P (2007) Motor effects of delta 9 THC in cerebellar Lurcher mutant mice. Behav Brain Res 181:248–253

    Article  PubMed  CAS  Google Scholar 

  • Lorivel T, Gras M, Hilber P (2010) Effects of corticosterone synthesis inhibitor metyrapone on anxiety-related behaviors in Lurcher mutant mice. Physiol Behav 101:309–314

    Article  PubMed  CAS  Google Scholar 

  • Manďáková P, Šinkora J, Šíma P, Vožeh F (2005) Reduced primary T lymphopoiesis in 3-month-old Lurcher mice: sign of premature ageing of thymus? Neuroimmunomodulation 12:348–356

    Article  PubMed  Google Scholar 

  • Markvartová V, Cendelín J, Vožeh F (2010) Changes of motor abilities during ontogenetic development in Lurcher mutant mice. Neuroscience 168:646–651

    Article  PubMed  Google Scholar 

  • Martin LA, Escher T, Goldowitz D, Mittleman G (2004) A relationship between cerebellar Purkinje cells and spatial working memory demonstrated in a lurcher/chimera mouse model system. Genes Brain Behav 3:158–166

    Article  PubMed  CAS  Google Scholar 

  • Monnier C, Lalonde R (1995) Elevated +−maze and hole-board exploration in Lurcher mutant mice. Brain Res 702:169–172

    Article  PubMed  CAS  Google Scholar 

  • Mysliveček J, Cendelín J, Korelusová I, Kunová M, Markvartová V, Vožeh F (2007) Changes of dopamine receptors in mice with olivocerebellar degeneration. Prague Med Rep 108:57–66

    PubMed  Google Scholar 

  • Nishiyama J, Yuzaki M (2010) Excitotoxicity and autophagy: lurcher may not be a model of “autophagic cell death”. Autophagy 6:568–570

    Article  Google Scholar 

  • Nishiyama J, Matsuda K, Kakegawa W, Yamada N, Motohashi J, Mizushima N, Yuzaki M (2010) Reevaluation of neurodegeneration in lurcher mice: constitutive ion fluxes cause cell death with, not by, autophagy. J Neurosci 30:2177–2218

    Article  PubMed  CAS  Google Scholar 

  • Norman DJ, Feng L, Cheng SS, Gubbay J, Chan E, Heintz N (1995) The lurcher gene induces apoptotic death in cerebellar Purkinje cells. Development 121:1183–1193

    PubMed  CAS  Google Scholar 

  • Phillips RJS (1960) “Lurcher”, new gene in linkage group XI of the house mouse. J Genet 57:35–42

    Article  Google Scholar 

  • Porras-Garcia E, Cendelín J, Dominguez-del-Toro E, Vožeh F, Delgado-Garcia JM (2005) Purkinje cell loss affects differentially the execution, acquisition and prepulse inhibition of skeletal and facial motor responses in Lurcher mice. Eur J Neurosci 21:979–988

    Article  PubMed  Google Scholar 

  • Porras-García E, Sánchez-Campusano R, Martínez-Vargas D, Domínguez-del-Toro E, Cendelín J, Vožeh F, Delgado-García JM (2010) Behavioral characteristics, associative learning capabilities, and dynamic association mapping in an animal model of cerebellar degeneration. J Neurophysiol 104:346–365

    Article  PubMed  Google Scholar 

  • Reader TA, Strazielle C, Botez MI, Lalonde R (1998) Brain dopamine and amino acid concentrations in Lurcher mutant mice. Brain Res Bull 45:489–493

    Article  PubMed  CAS  Google Scholar 

  • Reader TA, Ase AR, Le Marec N, Lalonde R (2000) Differential effects of L-tryptophan and buspirone on biogenic amine contents and metabolism in Lurcher mice cerebellum. Neurosci Lett 280:171–174

    Article  PubMed  CAS  Google Scholar 

  • Selimi F, Doughty M, Delhaye-Bouchaud N, Mariani J (2000a) Target-related and intrinsic neuronal death in Lurcher mutant mice are both mediated by caspase-3 activation. J Neurosci 20:992–1000

    PubMed  CAS  Google Scholar 

  • Selimi F, Vogel MW, Mariani J (2000b) Bax inactivation in lurcher mutants rescues cerebellar granule cells but not Purkinje cells or inferior olivary neurons. J Neurosci 20:5339–5345

    PubMed  CAS  Google Scholar 

  • Štenglová V, Cendelín J, Vožeh F (2004) Pohled do nitra mozečku. Vesmír 83:273–275

    Google Scholar 

  • Strazielle C, Lalonde R (1998) Grooming in Lurcher mutant mice. Physiol Behav 64:57–61

    Article  PubMed  CAS  Google Scholar 

  • Strazielle C, Lalonde R, Riopel L, Botez MI, Reader TA (1996) Regional distribution of the 5-HT innervation in the brain of normal and Lurcher mice as revealed by [3H]citalopram autoradiography. J Chem Neuroanat 10:157–171

    Article  PubMed  CAS  Google Scholar 

  • Strazielle C, Krémarik P, Ghersi-Egea JF, Lalonde R (1998a) Regional brain variations of cytochrome oxidase activity and motor coordination in Lurcher mutant mice. Exp Brain Res 121:35–45

    Article  PubMed  CAS  Google Scholar 

  • Strazielle C, Lalonde R, Amdiss F, Botez MI, Hébert C, Reader TA (1998b) Distribution of dopamine transporters in basal ganglia of cerebellar ataxic mice by [125I]RTI- 121 quantitative autoradiography. Neurochem Int 32:61–68

    Article  PubMed  CAS  Google Scholar 

  • Strazielle C, Lalonde R, Reader TA (2000) Autoradiography of glutamate receptor binding in adult Lurcher mutant mice. J Neuropathol Exp Neurol 59:707–722

    PubMed  CAS  Google Scholar 

  • Sultan F, König T, Möck M, Thier P (2002) Quantitative organization of neurotransmitters in the deep cerebellar nuclei of the Lurcher mutant. J Comp Neurol 452:311–323

    Article  PubMed  CAS  Google Scholar 

  • Swisher DA, Wilson DB (1977) Cerebellar histogenesis in the lurcher (Lc) mutant mouse. J Comp Neurol 173:205–218

    Article  PubMed  CAS  Google Scholar 

  • Thullier F, Lalonde R, Cousin X, Lestienne F (1997) Neurobehavioral evaluation of lurcher mutant mice during ontogeny. Dev Brain Res 100:22–28

    Article  CAS  Google Scholar 

  • Thullier F, Lalonde R, Lestienne F (1999) Effects of dopaminergic agents and of an NMDA receptor antagonist on motor coordination in Lurcher mutant mice. Pharmacol Biochem Behav 63:213–219

    Article  PubMed  CAS  Google Scholar 

  • Tomey DA, Heckroth JA (1993) Transplantation of normal embryonic cerebellar cell suspensions into the cerebellum of Lurcher mutant mice. Exp Neurol 122:165–170

    Article  PubMed  CAS  Google Scholar 

  • Triarhou LC (1996) The cerebellar model of neural grafting: structural integration and functional recovery. Brain Res Bull 39:127–138

    Article  PubMed  CAS  Google Scholar 

  • Van Alphen AM, Schepers T, Luo C, De Zeeuw CI (2002) Motor performance and motor learning in Lurcher mice. Ann NY Acad Sci 978:413–424

    Article  PubMed  Google Scholar 

  • Vernet-der Garabedian B, Lemaigre-Dubreuil Y, Delhaye-Bouchaud N, Mariani J (1998) Abnormal IL-1b cytokine expression in the cerebellum of the ataxic mutant mice staggerer and Lurcher. Mol Brain Res 62:224–227

    Article  PubMed  CAS  Google Scholar 

  • Vig PJ, Desaiah D, Subramony SH, Fratkin JD (1995) Developmental changes in cerebellar endothelin-1 receptors in the neurologic mouse lurcher mutant. Res Commun Mol Pathol Pharmacol 89:307–316

    PubMed  CAS  Google Scholar 

  • Vogel MW, McInnes M, Zanjani HS, Herrup K (1991) Cerebellar Purkinje cells provide target support over a limited spatial range: evidence from lurcher chimeric mice. Brain Res Dev Brain Res 64:87–94

    Article  PubMed  CAS  Google Scholar 

  • Vogel MW, Fan H, Sydnor J, Guidetti P (2001) Cytochrome oxidase activity is increased in +/Lc Purkinje cells destined to die. Neuroreport 12:3039–3043

    Article  PubMed  CAS  Google Scholar 

  • Vogel MW, Caston J, Yuzaki M, Mariani J (2007) The Lurcher mouse: fresh insights from an old mutant. Brain Res 1140:4–18

    Article  PubMed  CAS  Google Scholar 

  • Wang QJ, Ding Y, Kohtz DS, Mizushima N, Cristea IM, Rout MP, Chait BT, Zhong Y, Heintz MP, Yue Z (2006) Induction of autophagy in axonal dystrophy and degeneration. J Neurosci 26:8057–8068

    Article  PubMed  CAS  Google Scholar 

  • Wetts R, Herrup K (1982a) Interaction of granule, Purkinje and inferior olivary neurons in lurcher chimeric mice. I. Qualitative studies. J Embryol Exp Morphol 68:87–98

    PubMed  CAS  Google Scholar 

  • Wetts R, Herrup K (1982b) Interaction of granule, Purkinje and inferior olivary neurons in lurcher chimeric mice. II. Granule cell death. Brain Res 250:358–362

    Article  PubMed  CAS  Google Scholar 

  • Wüllner U, Löschmann PA, Weller M, Klockgether T (1995) Apoptotic cell death in the cerebellum of mutant weaver and lurcher mice. Neurosci Lett 200:109–112

    Article  PubMed  Google Scholar 

  • Wüllner U, Isenmann S, Gleichmann M, Klockgether T, Bähr M (1998) Expression of neurotrophins and neurotrophin receptors in the cerebellum of mutant weaver and lurcher mice. Dev Brain Res 110:1–6

    Article  Google Scholar 

  • Yue Z, Horton A, Bravin M, DeJager PL, Selimi F, Heintz N (2002) A novel protein complex linking the δ2 glutamate receptor and autophagy: implications for neurodegeneration in Lurcher mice. Neuron 35:921–933

    Article  PubMed  CAS  Google Scholar 

  • Zanjani HS, Vogel MW, Martinou JC, Delhaye-Bouchaud N, Mariani J (1998) Postnatal expression of Hu-Bcl-2 gene in Lurcher mutant mice fails to rescue Purkinje cells but protects inferior olivary neurons from target-related cell death. J Neurosci 18:319–327

    PubMed  CAS  Google Scholar 

  • Zanjani SH, Selimi F, Vogel MW, Haeberle AM, Boeuf J, Mariani J, Bailly YJ (2006) Survival of interneurons and parallel fiber synapses in a cerebellar cortex deprived of Purkinje cells: studies in the double mutant mouse Grid2Lc/-;Bax−/−. J Comp Neurol 497:622–635

    Article  PubMed  Google Scholar 

  • Zanjani HS, McFarland R, Cavelier P, Blokhin A, Gautheron V, Levenes C, Bambrick LL, Mariani J, Vogel MW (2009) Death and survival of heterozygous Lurcher Purkinje cells in vitro. Dev Neurobiol 69:505–517

    Article  PubMed  Google Scholar 

  • Zuo J, De Jager PL, Takahasi KJ, Jiang W, Linden DJ, Heintz H (1997) Neurodegeneration in Lurcher mice caused by mutation of δ2 glutamate receptor gene. Nature 388:769–773

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Cendelín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Cendelín, J., Vožeh, F. (2013). Lurcher Mouse. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_66

Download citation

Publish with us

Policies and ethics