Skip to main content

Advertisement

Log in

Substantia Nigra Echogenicity in Hereditary Ataxias With and Without Nigrostriatal Pathology: a Pilot Study

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Our objective was to determine whether substantia nigra (SN) hyperechogenicity is greater in spinocerebellar ataxias (SCA) with nigrostriatal affectation than in ataxias without it. A cross-sectional case-control study analyzing four groups of patients was conducted: 1) nigrostriatal ataxias (SCA3 and SCA6), 2) nigrostriatal healthy controls matched by age and sex, 3) non-nigrostriatal ataxias (FRDA and SCA7), and 4) non-nigrostriatal healthy controls matched by age and sex. All the patients underwent a transcranial ultrasound performed by an experienced sonographer blinded to the clinical, genetic, and neuroimaging data. The SN area was measured and compared in the four groups. The SN area was also correlated with clinical features and genetic data in the two ataxia groups. We examined 12 patients with nigrostriatal ataxia (11 SCA3 and 1 SCA6), 12 nigrostriatal healthy control patients, 7 patients with non-nigrostriatal ataxia (5 FRDA and 2 SCA7), and 7 non-nigrostriatal healthy control patients. The median (IQR) SN area (cm2) was greater in the nigrostriatal ataxias compared with the controls (right SN, 0.43 [0.44] vs. 0.11 [0.25]; P = 0.001; left SN, 0.32 [0.25] vs. 0.11 [0.16]; P = 0.001), but was similar among the non-nigrostriatal ataxias and controls. There were no statistically significant differences in the SN area between the nigrostriatal and non-nigrostriatal ataxias, although there was a tendency for a greater left SN area in the nigrostriatal compared with the non-nigrostriatal ataxias (0.32 [0.25] vs. 0.16 [0.24], P = 0.083). SN echogenicity is markedly greater in ataxias with nigrostriatal pathology than in controls. The role of SN hyperechogenicity in differentiating ataxias with and without nigrostriatal pathology should be elucidated in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Berg D. Substantia nigra hyperechogenicity is a risk marker or Parkinson’s disease: yes. J Neural Transm. 2011;118:613–9.

    Article  PubMed  Google Scholar 

  2. Berg D, Grote C, Rausch WD, Maurer M, Wesemann W, Riederer P, et al. Iron accumulation in the substantia nigra in rats visualized by ultrasound. Ultrasound Med Biol. 1999;25:901–4.

    Article  CAS  PubMed  Google Scholar 

  3. Berg D, Roggendorf W, Schroder U, Klein R, Tatschner T, Benz P, et al. Echogenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch Neurol. 2002;59:999–1005.

    Article  PubMed  Google Scholar 

  4. Zecca L, Berg D, Arzberger T, Ruprecht P, Rausch WD, Musicco M, et al. In vivo detection of iron and neuromelanin by transcranial sonography: a new approach for early detection of substantia nigra damage. Mov Disord. 2005;20:1278–85.

    Article  PubMed  Google Scholar 

  5. Berg D, Godau J, Riederer P, Gerlach M, Arzberger T. Microglia activation is related to substantia nigra echogenicity. J Neural Transm. 2010;117:1287–92.

    Article  CAS  PubMed  Google Scholar 

  6. Krogias C, Postert T, Eyding J. Transcranial sonography in ataxia. Int Rev Neurobiol. 2010;90:217–35.

    PubMed  Google Scholar 

  7. Wolters A, Walter U, Benecke R, Rolfs A. Characterization of autosomal dominant spinocerebellar ataxias with transcranial magnetic stimulation and transcranial brain parenchyma sonography. Kinische Neurophysiol. 2005;36:9–13.

    Article  Google Scholar 

  8. Mijajlović M, Dragasević N, Stefanova E, Petrović I, Svetel M, Kostić VS. Transcranial sonography in spinocerebellar ataxia type 2. J Neurol. 2008;255:1164–7.

    Article  PubMed  Google Scholar 

  9. Postert T, Eyding J, Berg D, Przuntek H, Becker G, Finger M, et al. Transcranial sonography in spinocerebellar ataxia type 3. J Neural Transm Suppl. 2004;68:123–33.

    PubMed  Google Scholar 

  10. Pedroso JL, Bor-Seng-Shu E, Felício AC, Braga-Neto P, Teixeira MJ, Barsottini OG. Transcranial sonography findings in spinocerebellar ataxia type 3 (Machado-Joseph disease): a cross-sectional study. Neurosci Lett. 2011;504:98–101.

    Article  CAS  PubMed  Google Scholar 

  11. Furtado S, Farrer M, Tsuboi Y, Klimek ML, de la Fuente-Fernandez R, Hussey J, et al. SCA-2 presenting as parkinsonism in an Alberta family: clinical, genetic, and PET findings. Neurology. 2002;59:1625–7.

    Article  CAS  PubMed  Google Scholar 

  12. Lu CS, Wu Chou YH, Kuo PC, Chang HC, Weng YH. The parkinsonian phenotype of spinocerebellar ataxia type 2. Arch Neurol. 2004;61:35–8.

    Article  PubMed  Google Scholar 

  13. Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.

    Article  PubMed  Google Scholar 

  14. Orozco Diaz G, Nodarse Fleites A, Cordovés Sagaz R, Auburger G. Autosomal dominant cerebellar ataxia: clinical analysis of 263 patients from a homogeneous population in Holguin, Cuba. Neurology. 1990;40:1369–75.

    Article  CAS  PubMed  Google Scholar 

  15. Rub U, de Vos RA, Schultz C, Brunt ER, Paulson H, Braak H. Spinocerebellar ataxia type 3 (Machado–Joseph disease): severe destruction of the lateral reticular nucleus. Brain. 2002;125:2115–24.

    Article  CAS  PubMed  Google Scholar 

  16. Rub U, Del Turco D, Del Tredici K, de Vos RA, Brunt ER, Reifenberger G, et al. Thalamic involvement in a spinocerebellar ataxia type 2 (SCA2) and a spinocerebellar ataxia type 3 (SCA3) patient, and its clinical relevance. Brain. 2003;126:2257–72.

    Article  CAS  PubMed  Google Scholar 

  17. Rub U, Burk K, Schöls L, Brunt ER, de Vos RA, Diaz GO, et al. Damage to the reticulotegmental nucleus of the pons in spinocerebellar ataxia type 1, 2, and 3. Neurology. 2004;63:1258–63.

    Article  CAS  PubMed  Google Scholar 

  18. van Gaalen J, Giunti P, van de Warrenburg BP. Movement disorders in spinocerebellar ataxias. Mov Disord. 2011;26:792–800.

    Article  PubMed  Google Scholar 

  19. Kim JM, Lee JY, Kim HJ, Kim JS, Kim YK, Park SS, et al. The wide clinical spectrum and nigrostriatal dopaminergic damage in spinocerebellar ataxia type 6. J Neurol Neurosurg Psychiatry. 2010;81:529–32.

    Article  PubMed  Google Scholar 

  20. Gierga K, Schelhaas HJ, Brunt ER, Seiden K, Scherzed W, Egensperger R, et al. Spinocerebellar ataxia type 6 (SCA6): neurodegeneration goes beyond the known brain predilection sites. Neuropathol Appl Neurobiol. 2009;35:515–27.

    Article  CAS  PubMed  Google Scholar 

  21. Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rüb U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol. 2012;124:1–21.

    Article  CAS  PubMed  Google Scholar 

  22. Koeppen AH. Friedreich’s ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci. 2011;303:1–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lamarche JB, Lemieux B, Lieu HB. The neuropathology of “typical” Friedreich’s ataxia in Quebec. Can J Neurol Sci. 1984;11(4 Suppl):592–600.

    CAS  PubMed  Google Scholar 

  24. Jitpimolmard S, Small J, King RH, Geddes J, Misra P, McLaughlin J, et al. The sensory neuropathy of Friedreich’s ataxia: an autopsy study of a case with prolonged survival. Acta Neuropathol. 1993;86:29–35.

    Article  CAS  PubMed  Google Scholar 

  25. Koeppen AH, Morral JA, McComb RD, Feustel PJ. The neuropathology of late-onset Friedreich’s ataxia. Cerebellum. 2011;10:96–103.

    Article  PubMed  Google Scholar 

  26. Synofzik M, Godau J, Lindig T, Schöls L, Berg D. Restless legs and substantia nigra hypoechogenicity are common features in Friedreich’s ataxia. Cerebellum. 2011;10:9–13.

    Article  PubMed  Google Scholar 

  27. Synofzik M, Godau J, Lindig T, Schöls L, Berg D. Transcranial sonography reveals cerebellar, nigral, and forebrain abnormalities in Friedreich’s ataxia. Neurodegener Dis. 2011;8:470–5.

    Article  PubMed  Google Scholar 

  28. Stocker H, Sojer M, Hering S, Nachbauer W, Seppi K, Schmidauer C, et al. Substantia nigra hypoechogenicity in Friedreich ataxia. Mov Disord. 2012;27:332–3.

    Article  Google Scholar 

  29. Sierra M, Infante J, Berciano J. Substantia nigra echogenicity in Friedreich’s ataxia patients. Cerebellum 2012 Dec 13.

  30. Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66:1717–20.

    Article  PubMed  Google Scholar 

  31. Stiasny-Kolster K, Mayer G, Schafer S, Moller JC, Heinzel-Gutenbrunner M, Oertel WH. The REM sleep behavior disorder screening questionnaire—a new diagnostic instrument. Mov Disord. 2007;22:2386–93.

    Article  PubMed  Google Scholar 

  32. Allen RP, Picchietti D, Hening WA, Trenkwalder C, Walters AS, Montplaisi J. Restless legs syndrome diagnosis and epidemiology workshop at the National Institutes of Health; International Restless Legs Syndrome Study Group. Restless legs syndrome: diagnostic criteria, special considerations, and epidemiology. A report from the restless legs syndrome diagnosis and epidemiology workshop at the National Institutes of Health. Sleep Med. 2003;4:101–19.

    Article  PubMed  Google Scholar 

  33. Folstein M, Folstein SE, McHugh PR. “Mini-mental state” a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.

    Article  CAS  PubMed  Google Scholar 

  34. Walter U, Behnke S, Eyding J, Niehaus L, Postert T, Deidel G, et al. Transcranial brain parenchyma sonography in movement disorders: state of the art. Ultrasound Med Biol. 2007;33:15–25.

    Article  PubMed  Google Scholar 

  35. Behnke S, Schroeder U, Dillmann U, Buchholz HG, Schreckenberger M, Fuss G, et al. Hyperechogenicity of the substantia nigra in healthy controls is related to MRI changes and to neuronal loss as determined by F-Dopa PET. Neuroimage. 2009;47:1237–43.

    Article  CAS  PubMed  Google Scholar 

  36. Pedroso JL, Bor-Seng-Shu E, Felicio AC, Braga-Neto P, Hoexter MQ, Teixeira MJ, et al. Substantia nigra echogenicity is correlated with nigrostriatal impairment in Machado-Joseph disease. Parkinsonism Relat Disord. 2013;19:742–5.

    Article  PubMed  Google Scholar 

  37. Pedroso JL, Bor-Seng-Shu E, Felicio AC, Braga-Neto P, Dutra LA, de Aquino CC et al. Severity of restless legs syndrome is inversely correlated with echogenicity of the substantia nigra in different neurodegenerative movement disorders. A preliminary observation. J Neurol Sci 2012;31959–62.

  38. Todd G, Noyes C, Flavel SC, Della Vedova CB, Spyropoulos P, Chatterton B, et al. Illicit stimulant use is associated with abnormal substantia nigra morphology in humans. PLoS One. 2013;8:e56438.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Juliette Siegfried at ServingMed.com for language editing of the manuscript. Dr. Arpa has received grant funding for other projects from the Agencia Pedro Laín Entralgo (Madrid, Spain) and the Spanish Ministry of Health.

Conflict of Interest

This project has been supported by a grant from the Spanish Ministry of Health, Social Policy and Equality (TRA-052). The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Martínez-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Sánchez, P., Cazorla-García, R., Sanz-Gallego, I. et al. Substantia Nigra Echogenicity in Hereditary Ataxias With and Without Nigrostriatal Pathology: a Pilot Study. Cerebellum 14, 240–246 (2015). https://doi.org/10.1007/s12311-014-0642-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0642-8

Keywords

Navigation