Skip to main content
Log in

The Transcription Factor Cux1 in Cerebellar Granule Cell Development and Medulloblastoma Pathogenesis

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Cux1, also known as Cutl1, CDP or Cut is a homeodomain transcription factor implicated in the regulation of normal and oncogenic development in diverse peripheral tissues and organs. We studied the expression and functional role of Cux1 in cerebellar granule cells and medulloblastoma. Cux1 is robustly expressed in proliferating granule cell precursors and in postmitotic, migrating granule cells. Expression is lost as postmigratory granule cells mature. Moreover, Cux1 is also strongly expressed in a well-established mouse model of medulloblastoma. In contrast, expression of CUX1 in human medulloblastoma tissue samples is lower than in normal fetal cerebellum. In these tumors, CUX1 expression tightly correlates with a set of genes which, when mapped on a global protein-protein interaction dataset, yields a tight network that constitutes a cell cycle control signature and may be related to p53 and the DNA damage response pathway. Antisense-mediated reduction of CUX1 levels in two human medulloblastoma cell lines led to a decrease in proliferation and altered motility. The developmental expression of Cux1 in the cerebellum and its action in cell lines support a role in granule cell and medulloblastoma proliferation. Its expression in human medulloblastoma shifts that perspective, suggesting that CUX1 is part of a network involved in cell cycle control and maintenance of DNA integrity. The constituents of this network may be rational targets to therapeutically approach medulloblastomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schüller U, Kho AT, Zhao Q, Ma Q, Rowitch DH. Cerebellar “transcriptome” reveals cell-type and stage-specific expression during postnatal development and tumorigenesis. Mol Cell Neurosci. 2006;33:247–59.

    Article  PubMed  Google Scholar 

  2. Ayrault O, Zhao H, Zindy F, Qu C, Sherr CJ, Roussel MF. Atoh1 inhibits neuronal differentiation and collaborates with Gli1 to generate medulloblastoma-initiating cells. Cancer Res. 2010;70:5618–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Di C, Liao S, Adamson DC, Parrett TJ, Broderick DK, Shi Q, et al. Identification of OTX2 as a medulloblastoma oncogene whose product can be targeted by all-trans retinoic acid. Cancer Res. 2005;65:919–24.

    CAS  PubMed  Google Scholar 

  4. Alcalay NI, Vanden Heuvel GB. Regulation of cell proliferation and differentiation in the kidney. Front Biosci. 2009;14:4978–91.

    Article  CAS  Google Scholar 

  5. Xu H, He J-H, Xiao Z-D, Zhang Q-Q, Chen Y-Q, Zhou H, et al. Liver-enriched transcription factors regulate microRNA-122 that targets CUTL1 during liver development. Hepatology. 2010;52:1431–42.

    Article  CAS  PubMed  Google Scholar 

  6. Kedinger V, Nepveu A. The roles of CUX1 homeodomain proteins in the establishment of a transcriptional program required for cell migration and invasion. Cell Adhes Migr. Landes Bioscience; 2010;4:348–52.

  7. Michl P, Ramjaun AR, Pardo OE, Warne PH, Wagner M, Poulsom R, et al. CUTL1 is a target of TGF(beta) signaling that enhances cancer cell motility and invasiveness. Cancer Cell. 2005;7:521–32.

    Article  CAS  PubMed  Google Scholar 

  8. Ripka S, Neesse A, Riedel J, Bug E, Aigner A, Poulsom R, et al. CUX1: target of Akt signalling and mediator of resistance to apoptosis in pancreatic cancer. Gut. 2010;59:1101–10.

    Article  CAS  PubMed  Google Scholar 

  9. Kühnemuth B, Michl P. CUX1 (cut-like homeobox 1). Jean-Loup Huret (Editor-in-Chief); INIST-CNRS (Publisher); 2012.

  10. Harada R, Vadnais C, Sansregret L, Leduy L, Bérubé G, Robert F, et al. Genome-wide location analysis and expression studies reveal a role for p110 CUX1 in the activation of DNA replication genes. Nucleic Acids Res. Oxford University Press; 2008;36:189–202.

  11. Mcnerney ME, Brown CD, Wang X, Bartom ET, Karmakar S, Bandlamudi C, et al. CUX1 is a haploinsufficient tumor suppressor gene on chromosome 7 frequently inactivated in acute myeloid leukemia. 2013;121.

  12. Wong CC, Martincorena I, Rust AG, Rashid M, Alifrangis C, Alexandrov LB, et al. Inactivating CUX1 mutations promote tumorigenesis. Nat Genet. Nature Publishing Group; 2013.

  13. Nieto M, Monuki ES, Tang H, Imitola J, Haubst N, Khoury SJ, et al. Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II–IV of the cerebral cortex. J Comp Neurol. 2004;479:168–80.

    Article  CAS  PubMed  Google Scholar 

  14. Cubelos B, Sebastián-Serrano A, Kim S, Redondo JM, Walsh C, Nieto M. Cux-1 and Cux-2 control the development of Reelin expressing cortical interneurons. Dev Neurobiol. 2008;68:917–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cubelos B, Sebastián-Serrano A, Beccari L, Calcagnotto ME, Cisneros E, Kim S, et al. Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. Neuron. 2010;66:523–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Reardon DA, Michalkiewicz E, Boyett JM, Sublett JE, Entrekin RE, Ragsdale ST, et al. Extensive genomic abnormalities in childhood medulloblastoma by comparative genomic hybridization. Cancer Res. 1997;57:4042–7.

    CAS  PubMed  Google Scholar 

  17. Nishizaki T, Harada K, Kubota H, Ozaki S, Ito H, Sasaki K. Genetic alterations in pediatric medulloblastomas detected by comparative genomic hybridization. Pediatr Neurosurg. 1999;31:27–32.

    Article  CAS  PubMed  Google Scholar 

  18. Avet-Loiseau H, Vénuat AM, Terrier-Lacombe MJ, Lellouch-Tubiana A, Zerah M, Vassal G. Comparative genomic hybridization detects many recurrent imbalances in central nervous system primitive neuroectodermal tumours in children. Br J Cancer. 1999;79:1843–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Tong CYK, Hui ABY, Yin X-L, Pang JCS, Zhu X-L, Poon W-S, et al. Detection of oncogene amplifications in medulloblastomas by comparative genomic hybridization and array-based comparative genomic hybridization. J Neurosurg. 2004;100:187–93.

    CAS  PubMed  Google Scholar 

  20. Schüller U, Heine VM, Mao J, Kho AT, Dillon AK, Han Y-G, et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell. 2008;14:123–34.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101–8.

    Article  CAS  PubMed  Google Scholar 

  22. Borovkov AY, Rivkin MI. XcmI-containing vector for direct cloning of PCR products. Biotechniques. 1997;22:812–4.

    CAS  PubMed  Google Scholar 

  23. Xu X-M, Yoo M-H, Carlson BA, Gladyshev VN, Hatfield DL. Simultaneous knockdown of the expression of two genes using multiple shRNAs and subsequent knock-in of their expression. Nat Protoc. 2009;4:1338–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Weisheit G, Mertz D, Schilling K, Viebahn C. An efficient in situ hybridization protocol for multiple tissue sections and probes on miniaturized slides. Dev Genes Evol. 2002;212:403–6.

    Article  CAS  PubMed  Google Scholar 

  25. Glassmann A, Topka S, Wang-Eckardt L, Anders S, Weisheit G, Endl E, et al. Basic molecular fingerprinting of immature cerebellar cortical inhibitory interneurons and their precursors. Neuroscience. IBRO; 2009;159:69–82.

  26. MTrackJ: A Java Program for Manual Object Tracking. Available from: http://www.imagescience.org/meijering/software/mtrackj/.

  27. Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, Van Sluis P, et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. Array, editor. PLoS One. Public Library of Science; 2008;3:14.

  28. Remke M, Hielscher T, Korshunov A, Northcott PA, Bender S, Kool M, et al. FSTL5 is a marker of poor prognosis in non-WNT/non-SHH medulloblastoma. J Clin Oncol. 2011;29:3852–61.

    Article  CAS  PubMed  Google Scholar 

  29. Robinson G, Parker M, Kranenburg TA, Lu C, Chen X, Ding L, et al. Novel mutations target distinct subgroups of medulloblastoma. Nature. 2012;488:43–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature. Nature Publishing Group; 2002;415:436–42.

  31. Székely GJ, Rizzo ML, Bakirov NK. Measuring and testing dependence by correlation of distances. Ann Stat. Institute of Mathematical Statistics; 2007;35:2769–94.

  32. Kinney JB, Atwal GS, Jan QM. maximal information coefficient.:1–16.

  33. Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. 2005; Available from: http://www.citeulike.org/user/ftwaroch/article/2400517.

  34. Sokal RR, Rohlf FJ. Biometry: the principles and practice of statistics in biological research. New York: Freeman; 1995.

    Google Scholar 

  35. Razick S, Magklaras G, Donaldson IM. iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinforma. 2008;9:405.

    Article  Google Scholar 

  36. Mora A, Donaldson IM. iRefR: an R package to manipulate the iRefIndex consolidated protein interaction database. BMC Bioinforma. 2011;12:455.

    Article  Google Scholar 

  37. Csardi G, Nepusz T. The igraph software package for complex network research. Int J Complex Syst. 2006;1695:1695.

    Google Scholar 

  38. Schaller KL, Caldwell JH. Developmental and regional expression of sodium channel isoform NaCh6 in the rat central nervous system. J Comp Neurol. 2000;420:84–97.

    Article  CAS  PubMed  Google Scholar 

  39. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho Y-J, Clifford SC, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2011;123:465–72.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, Frank BC, et al. Multiple-laboratory comparison of microarray platforms. Nat Methods. 2005;2:345–50.

    Article  CAS  PubMed  Google Scholar 

  41. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun X-W, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644–8.

    Article  CAS  PubMed  Google Scholar 

  42. Natarajan L, Pu M, Messer K. Exact statistical tests for the intersection of independent lists of genes. Ann Appl Stat. 2012;6:521–41.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  Google Scholar 

  44. Efron B. Microarrays, empirical Bayes and the two-groups model. Stat Sci. 2008;23:1–22.

    Article  Google Scholar 

  45. Snuderl M, Batista A, Kirkpatrick ND, Ruiz de Almodovar C, Riedemann L, Walsh EC, et al. Targeting placental growth factor/neuropilin 1 pathway inhibits growth and spread of medulloblastoma. Cell. 2013;152:1065–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Pambid MR, Berns R, Adomat HH, Hu K, Triscott J, Maurer N, et al. Overcoming resistance to Sonic Hedgehog inhibition by targeting p90 ribosomal S6 kinase in pediatric medulloblastoma. Pediatr Blood Cancer. 2014;61:107–15.

    Article  CAS  PubMed  Google Scholar 

  47. Cells T, Goulet B, Watson P, Poirier M, Leduy L, Be G, et al. Characterization of a tissue-specific CDP/Cux Isoform, p75, Activated in Breast. 2002;6625–33.

  48. Goulet B, Truscott M, Nepveu A. A novel proteolytically processed CDP/Cux isoform of 90 kDa is generated by cathepsin L. Biol Chem. 2006;387:1285–93.

    Article  CAS  PubMed  Google Scholar 

  49. Moon NS, Premdas P, Truscott M, Leduy L, Bérubé G, Nepveu A. S phase-specific proteolytic cleavage is required to activate stable DNA binding by the CDP/Cut homeodomain protein. Mol Cell Biol. American Society for Microbiology; 2001;21:6332–45.

  50. Maitra U, Seo J, Lozano MM, Dudley JP. Differentiation-induced cleavage of Cutl1/CDP generates a novel dominant-negative isoform that regulates mammary gene expression. Mol Cell Biol. American Society for Microbiology; 2006;26:7466–78.

  51. Truscott M, Denault J-B, Goulet B, Leduy L, Salvesen GS, Nepveu A. Carboxyl-terminal proteolytic processing of CUX1 by a caspase enables transcriptional activation in proliferating cells. J Biol Chem. 2007;282:30216–26.

    Article  CAS  PubMed  Google Scholar 

  52. Lievens PM, Tufarelli C, Donady JJ, Stagg A, Neufeld EJ. CASP, a novel, highly conserved alternative-splicing product of the CDP/cut/cux gene, lacks cut-repeat and homeo DNA-binding domains, and interacts with full-length CDP in vitro. Gene. 1997;197:73–81.

    Article  CAS  PubMed  Google Scholar 

  53. Gillingham AK, Pfeifer AC, Munro S. CASP, the alternatively spliced product of the gene encoding the CCAAT-displacement protein transcription factor, is a Golgi membrane protein related to giantin. Mol Biol Cell. 2002;13:3761–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Limame R, Wouters A, Pauwels B, Fransen E, Peeters M, Lardon F, et al. Comparative analysis of dynamic cell viability, migration and invasion assessments by novel real-time technology and classic endpoint assays. PLoS One. 2012;7:e46536.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Lau K-M, Chan QKY, Pang JCS, Li KKW, Yeung WW, Chung NYF, et al. Minichromosome maintenance proteins 2, 3 and 7 in medulloblastoma: overexpression and involvement in regulation of cell migration and invasion. Oncogene. Nature Publishing Group; 2010;29:5475–89.

  56. Studebaker AW, Kreofsky CR, Pierson CR, Russell SJ, Galanis E, Raffel C. Treatment of medulloblastoma with a modified measles virus. Neuro Oncol. 2010;12:1034–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Iii RLS, Sidransky D, Friedman HS, Bigner SH, Bigner DD, Vogelstein B, et al. Infrequent p53 gene mutations in medulloblastomas advances in brief infrequent p53 gene mutations in medulloblastomas1. 1991;4721–3.

  58. Burov S, Jeon J-H, Metzler R, Barkai E. Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. Phys Chem Chem Phys. 2011;13:1800–12.

    Article  CAS  PubMed  Google Scholar 

  59. Thurner S, Wick N, Hanel R. Anomalous diffusion on dynamical networks: a model for interacting epithelial cell migration. 2003;320:475–84.

  60. Epple LM, Griffiths SG, Dechkovskaia AM, Dusto NL, White J, Ouellette RJ, et al. Medulloblastoma exosome proteomics yield functional roles for extracellular vesicles. Castresana JS, editor. PLoS One. Public Library of Science; 2012;7:e42064.

  61. Sansregret L, Goulet B, Harada R, Wilson B, Leduy L, Bertoglio J, et al. The p110 isoform of the CDP/Cux transcription factor accelerates entry into S phase. Mol Cell Biol. 2006;26:2441–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Truscott M, Harada R, Vadnais C, Robert F, Nepveu A. p110 CUX1 cooperates with E2F transcription factors in the transcriptional activation of cell cycle-regulated genes. Mol Cell Biol. 2008;28:3127–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Ripka S, König A, Buchholz M, Wagner M, Sipos B, Klöppel G, et al. WNT5A—target of CUTL1 and potent modulator of tumor cell migration and invasion in pancreatic cancer. Carcinogenesis. 2007;28:1178–87.

    Article  CAS  PubMed  Google Scholar 

  64. Ard PG, Chatterjee C, Kunjibettu S, Adside LR, Gralinski LE, McMahon SB. Transcriptional regulation of the mdm2 oncogene by p53 requires TRRAP acetyltransferase complexes. Mol Cell Biol. 2002;22:5650–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Lee J, Beliakoff J, Sun Z. The novel PIAS-like protein hZimp10 is a transcriptional co-activator of the p53 tumor suppressor. Nucleic Acids Res. 2007;35:4523–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Hock AK, Vigneron AM, Carter S, Ludwig RL, Vousden KH. Regulation of p53 stability and function by the deubiquitinating enzyme USP42. EMBO J. 2011;30:4921–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Puca R, Nardinocchi L, Givol D, D’Orazi G. Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells. Oncogene. 2010;29:4378–87.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang X-C, Chen J, Su C-H, Yang H-Y, Lee M-H. Roles for CSN5 in control of p53/MDM2 activities. J Cell Biochem. 2008;103:1219–30.

    Article  CAS  PubMed  Google Scholar 

  69. Amson R, Pece S, Lespagnol A, Vyas R, Mazzarol G, Tosoni D, et al. Reciprocal repression between P53 and TCTP. Nat Med. 2012;18:91–9.

    Article  CAS  Google Scholar 

  70. Woods NT, Mesquita RD, Sweet M, Carvalho MA, Li X, Liu Y, et al. Charting the landscape of tandem BRCT domain-mediated protein interactions. Sci Signal. 2012;5:rs6.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Vadnais C, Davoudi S, Afshin M, Harada R, Dudley R, Clermont P-L, et al. CUX1 transcription factor is required for optimal ATM/ATR-mediated responses to DNA damage. Nucleic Acids Res. 2012;40:4483–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Baxter EW, Milner J. p53 Regulates LIF expression in human medulloblastoma cells. J Neurooncol. 2010;97:373–82.

    Article  CAS  PubMed  Google Scholar 

  73. Frappart P-O, Lee Y, Russell HR, Chalhoub N, Wang Y-D, Orii KE, et al. Recurrent genomic alterations characterize medulloblastoma arising from DNA double-strand break repair deficiency. Proc Natl Acad Sci U S A. 2009;106:1880–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Wang Y-C, Peterson SE, Loring JF. Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Res. Nature Publishing Group; 2013;1–18.

  75. Panier S, Durocher D. Push back to respond better: regulatory inhibition of the DNA double-strand break response. Nat Rev Mol Cell Biol. Nature Publishing Group; 2013;14:661–72.

  76. Xu J, Zhu W, Xu W, Cui X, Chen L, Ji S, et al. Silencing of MBD1 reverses pancreatic cancer therapy resistance through inhibition of DNA damage repair. Int J Oncol. 2013;42:2046–52.

    CAS  PubMed  Google Scholar 

  77. Reid S, Schindler D, Hanenberg H, Barker K, Hanks S, Kalb R, et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet. 2007;39:162–4.

    Article  CAS  PubMed  Google Scholar 

  78. Alter BP, Rosenberg PS, Brody LC. Clinical and molecular features associated with biallelic mutations in FANCD1/BRCA2. J Med Genet. 2007;44:1–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Li P, Du F, Yuelling LW, Lin T, Muradimova RE, Tricarico R, et al. A population of Nestin-expressing progenitors in the cerebellum exhibits increased tumorigenicity. Nat Neurosci. Nature Publishing Group; 2013;16:1737–44.

  80. Li J, Han YR, Plummer MR, Herrup K. Cytoplasmic ATM in neurons modulates synaptic function. Curr Biol. Elsevier Ltd; 2009;19:2091–6.

  81. Ramdzan ZM, Vadnais C, Pal R, Vandal G, Cadieux C, Leduy L, et al. RAS transformation requires CUX1-dependent repair of oxidative DNA damage. PLoS Biol. 2014;12:e1001807.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Genovesi LA, Ng CG, Davis MJ, Remke M, Taylor MD, Adams DJ, et al. Sleeping Beauty mutagenesis in a mouse medulloblastoma model defines networks that discriminate between human molecular subgroups. Proc Natl Acad Sci U S A. 2013;110:E4325–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Weinberg RA. The cat and mouse games that genes, viruses, and cells play. Cell. 1997;88:573–5.

    Article  CAS  PubMed  Google Scholar 

  84. Leonard JM, Ye H, Wetmore C, Karnitz LM. Sonic Hedgehog signaling impairs ionizing radiation-induced checkpoint activation and induces genomic instability. J Cell Biol. 2008;183:385–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Diede SJ, Yao Z, Keyes CC, Tyler AE, Dey J, Hackett CS, et al. Fundamental differences in promoter CpG island DNA hypermethylation between human cancer and genetically engineered mouse models of cancer. Epigenetics. 2013;8.

  86. Biss M, Xiao W. Selective tumor killing based on specific DNA-damage response deficiencies. Cancer Biol Ther. 2012;13:239–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Ljungman M. Targeting the DNA damage response in cancer. Chem Rev. 2009;109:2929–50.

    Article  CAS  PubMed  Google Scholar 

  88. Fernandez-L A, Squatrito M, Northcott P, Awan A, Holland EC, Taylor MD, et al. Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma through IGF2-mediated Akt activation. Oncogene. 2012;31:1923–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Künkele A, De Preter K, Heukamp L, Thor T, Pajtler KW, Hartmann W, et al. Pharmacological activation of the p53 pathway by nutlin-3 exerts anti-tumoral effects in medulloblastomas. Neuro Oncol. 2012;14:859–69.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. D. Hatfield, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA for the generous gift of the pU6m4 silencing vector. We would like to thank D. Krauß and F. Neuhalfen for their help with animal husbandry.

Funding

None

Conflict of Interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Topka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topka, S., Glassmann, A., Weisheit, G. et al. The Transcription Factor Cux1 in Cerebellar Granule Cell Development and Medulloblastoma Pathogenesis. Cerebellum 13, 698–712 (2014). https://doi.org/10.1007/s12311-014-0588-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0588-x

Keywords

Navigation