Skip to main content
Log in

Knockdown of Acid-Sensing Ion Channel 1a (ASIC1a) Suppresses Disease Phenotype in SCA1 Mouse Model

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The mutated ataxin-1 protein in spinocerebellar ataxia 1 (SCA1) targets Purkinje cells (PCs) of the cerebellum and causes progressive ataxia due to loss of PCs and neurons of the brainstem. The exact mechanism of this cellular loss is still not clear. Currently, there are no treatments for SCA1; however, understanding of the mechanisms that regulate SCA1 pathology is essential for devising new therapies for SCA1 patients. We previously established a connection between the loss of intracellular calcium-buffering and calcium-signalling proteins with initiation of neurodegeneration in SCA1 transgenic (Tg) mice. Recently, acid-sensing ion channel 1a (ASIC1a) have been implicated in calcium-mediated toxicity in many brain disorders. Here, we report generating SCA1 Tg mice in the ASIC1a knockout (KO) background and demonstrate that the deletion of ASIC1a gene expression causes suppression of the SCA1 disease phenotype. Loss of the ASIC1a channel in SCA1/ASIC1a KO mice resulted in the improvement of motor deficit and decreased PC degeneration. Interestingly, the expression of the ASIC1 variant, ASIC1b, was upregulated in the cerebellum of both SCA1/ASIC1a KO and ASIC1a KO animals as compared to the wild-type (WT) and SCA1 Tg mice. Further, these SCA1/ASIC1a KO mice exhibited translocation of PC calcium-binding protein calbindin-D28k from the nucleus to the cytosol in young animals, which otherwise have both cytosolic and nuclear localization. Furthermore, in addition to higher expression of calcium-buffering protein parvalbumin, PCs of the older SCA1/ASIC1a KO mice showed a decrease in morphologic abnormalities as compared to the age-matched SCA1 animals. Our data suggest that ASIC1a may be a mediator of SCA1 pathogenesis and targeting ASIC1a could be a novel approach to treat SCA1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Matilla-Duenas A, Goold R, Giunti P. Clinical, genetic, molecular, and pathophysiological insights into spinocerebellar ataxia type 1. Cerebellum. 2008;7(2):106–14.

    Article  CAS  PubMed  Google Scholar 

  2. Matilla-Duenas A et al. Cellular and molecular pathways triggering neurodegeneration in the spinocerebellar ataxias. Cerebellum. 2010;9(2):148–66.

    Article  CAS  PubMed  Google Scholar 

  3. Zoghbi HY, Orr HT. Glutamine repeats and neurodegeneration. Annu Rev Neurosci. 2000;23:217–47.

    Article  CAS  PubMed  Google Scholar 

  4. Vig PJ, Subramony SH, McDaniel DO. Calcium homeostasis and spinocerebellar ataxia-1 (SCA-1). Brain Res Bull. 2001;56(3–4):221–5.

    Article  CAS  PubMed  Google Scholar 

  5. Burright EN et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell. 1995;82(6):937–48.

    Article  CAS  PubMed  Google Scholar 

  6. Vig PJ et al. Bergmann glial S100B activates myo-inositol monophosphatase 1 and co-localizes to purkinje cell vacuoles in SCA1 transgenic mice. Cerebellum. 2009;8(3):231–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Vig PJ et al. Reduced immunoreactivity to calcium-binding proteins in Purkinje cells precedes onset of ataxia in spinocerebellar ataxia-1 transgenic mice. Neurology. 1998;50(1):106–13.

    Article  CAS  PubMed  Google Scholar 

  8. Vig PJ et al. Suppression of calbindin-D28k expression exacerbates SCA1 phenotype in a disease mouse model. Cerebellum. 2012;11(3):718–32.

    Article  CAS  PubMed  Google Scholar 

  9. Waldmann R et al. A proton-gated cation channel involved in acid-sensing. Nature. 1997;386(6621):173–7.

    Article  CAS  PubMed  Google Scholar 

  10. Price MP, Snyder PM, Welsh MJ. Cloning and expression of a novel human brain Na+ channel. J Biol Chem. 1996;271(14):7879–82.

    Article  CAS  PubMed  Google Scholar 

  11. Waldmann R, Lazdunski M. H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol. 1998;8(3):418–24.

    Article  CAS  PubMed  Google Scholar 

  12. Garcia-Anoveros J et al. BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. Proc Natl Acad Sci U S A. 1997;94(4):1459–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lingueglia E et al. A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J Biol Chem. 1997;272(47):29778–83.

    Article  CAS  PubMed  Google Scholar 

  14. Chen CC et al. A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci U S A. 1998;95(17):10240–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Akopian AN et al. A new member of the acid-sensing ion channel family. Neuroreport. 2000;11(10):2217–22.

    Article  CAS  PubMed  Google Scholar 

  16. Grunder S et al. A new member of acid-sensing ion channels from pituitary gland. Neuroreport. 2000;11(8):1607–11.

    Article  CAS  PubMed  Google Scholar 

  17. Benson CJ et al. Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. Proc Natl Acad Sci U S A. 2002;99(4):2338–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Sherwood TW et al. Heteromeric acid-sensing ion channels (ASICs) composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death. J Neurosci. 2011;31(26):9723–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Jasti J et al. Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature. 2007;449(7160):316–23.

    Article  CAS  PubMed  Google Scholar 

  20. Allen NJ, Attwell D. Modulation of ASIC channels in rat cerebellar Purkinje neurons by ischaemia-related signals. J Physiol. 2002;543(Pt 2):521–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Akaike N, Ueno S. Proton-induced current in neuronal cells. Prog Neurobiol. 1994;43(1):73–83.

    Article  CAS  PubMed  Google Scholar 

  22. Isaev NK et al. Acidosis-induced zinc-dependent death of cultured cerebellar granule neurons. Cell Mol Neurobiol. 2010;30(6):877–83.

    Article  CAS  PubMed  Google Scholar 

  23. Vergo S et al. Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. Brain. 2011;134(Pt 2):571–84.

    Article  PubMed  Google Scholar 

  24. Yuan FL et al. Acid-sensing ion channel 1a mediates acid-induced increases in intracellular calcium in rat articular chondrocytes. Mol Cell Biochem. 2010;340(1–2):153–9.

    Article  CAS  PubMed  Google Scholar 

  25. Xiong ZG et al. Acid-sensing ion channels (ASICs) as pharmacological targets for neurodegenerative diseases. Curr Opin Pharmacol. 2008;8(1):25–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Xiong ZG, Chu XP, Simon RP. Acid sensing ion channels—novel therapeutic targets for ischemic brain injury. Front Biosci. 2007;12:1376–86.

    Article  CAS  PubMed  Google Scholar 

  27. Xiong ZG, Chu XP, Simon RP. Ca2+-permeable acid-sensing ion channels and ischemic brain injury. J Membr Biol. 2006;209(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  28. Yermolaieva O et al. Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc Natl Acad Sci U S A. 2004;101(17):6752–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Friese MA et al. Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med. 2007;13(12):1483–9.

    Article  CAS  PubMed  Google Scholar 

  30. Wong HK et al. Blocking acid-sensing ion channel 1 alleviates Huntington’s disease pathology via an ubiquitin-proteasome system-dependent mechanism. Hum Mol Genet. 2008;17(20):3223–35.

    Article  CAS  PubMed  Google Scholar 

  31. Hu R et al. Role of acid-sensing ion channel 1a in the secondary damage of traumatic spinal cord injury. Ann Surg. 2011;254(2):353–62.

    Article  PubMed  Google Scholar 

  32. Shen L et al. Research on screening and identification of proteins interacting with ataxin-3. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2005;22(3):242–7.

    CAS  PubMed  Google Scholar 

  33. Xiong ZG et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell. 2004;118(6):687–98.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang S et al. Cortical GABAergic neurons and cerebellar Purkinje cells respond to ischemia-pathogenic factors differently. Brain Res. 2011;1382:291–7.

    Article  CAS  PubMed  Google Scholar 

  35. Zha XM et al. Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density of dendritic spines. Proc Natl Acad Sci U S A. 2006;103(44):16556–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wemmie JA et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron. 2002;34(3):463–77.

    Article  CAS  PubMed  Google Scholar 

  37. Wemmie JA, Price MP, Welsh MJ. Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci. 2006;29(10):578–86.

    Article  CAS  PubMed  Google Scholar 

  38. McDonald FJ et al. Disruption of the beta subunit of the epithelial Na+ channel in mice: hyperkalemia and neonatal death associated with a pseudohypoaldosteronism phenotype. Proc Natl Acad Sci U S A. 1999;96(4):1727–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Hearst SM et al. Dopamine D2 receptor signaling modulates mutant ataxin-1S776 phosphorylation and aggregation. J Neurochem. 2010;114(3):706–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Page AJ et al. The ion channel ASIC1 contributes to visceral but not cutaneous mechanoreceptor function. Gastroenterology. 2004;127(6):1739–47.

    Article  CAS  PubMed  Google Scholar 

  41. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  42. Vig PJ et al. Glial S100B protein modulates mutant ataxin-1 aggregation and toxicity: TRTK12 peptide, a potential candidate for SCA1 therapy. Cerebellum. 2011;10(2):254–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Clark HB et al. Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to disparate effects on motor behaviors, followed by a progressive cerebellar dysfunction and histological alterations. J Neurosci. 1997;17(19):7385–95.

    CAS  PubMed  Google Scholar 

  44. Chai S et al. Activation of acid-sensing ion channel 1a (ASIC1a) by surface trafficking. J Biol Chem. 2010;285(17):13002–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Bassler EL et al. Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b. J Biol Chem. 2001;276(36):33782–7.

    Article  CAS  PubMed  Google Scholar 

  46. Vig PJ et al. Decreased parvalbumin immunoreactivity in surviving Purkinje cells of patients with spinocerebellar ataxia-1. Neurology. 1996;47(1):249–53.

    Article  CAS  PubMed  Google Scholar 

  47. Vig PJ et al. Relationship between ataxin-1 nuclear inclusions and Purkinje cell specific proteins in SCA-1 transgenic mice. J Neurol Sci. 2000;174(2):100–10.

    Article  CAS  PubMed  Google Scholar 

  48. Vig PJ et al. Glial S100B positive vacuoles in purkinje cells: earliest morphological abnormality in SCA1 transgenic mice. J Neurol Sci Turk. 2006;23(3):166–74.

    PubMed Central  PubMed  Google Scholar 

  49. Cummings CJ et al. Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet. 2001;10(14):1511–8.

    Article  CAS  PubMed  Google Scholar 

  50. Duvick L et al. SCA1-like disease in mice expressing wild-type ataxin-1 with a serine to aspartic acid replacement at residue 776. Neuron. 2010;67(6):929–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Orr HT et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993;4(3):221–6.

    Article  CAS  PubMed  Google Scholar 

  52. Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annu Rev Neurosci. 2007;30:575–621.

    Article  CAS  PubMed  Google Scholar 

  53. Vig PJ et al. Intranasal administration of IGF-I improves behavior and Purkinje cell pathology in SCA1 mice. Brain Res Bull. 2006;69(5):573–9.

    Article  CAS  PubMed  Google Scholar 

  54. Park J et al. RAS-MAPK-MSK1 pathway modulates ataxin 1 protein levels and toxicity in SCA1. Nature. 2013;498(7454):325–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Wang YZ et al. Intracellular ASIC1a regulates mitochondrial permeability transition-dependent neuronal death. Cell Death Differ. 2013;20(10):1359–69.

    Article  CAS  PubMed  Google Scholar 

  56. Gao J et al. Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron. 2005;48(4):635–46.

    Article  CAS  PubMed  Google Scholar 

  57. Duan B et al. Extracellular spermine exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. J Neurosci. 2011;31(6):2101–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Wu LJ et al. Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord. J Biol Chem. 2004;279(42):43716–24.

    Article  CAS  PubMed  Google Scholar 

  59. Baron A et al. Acid sensing ion channels in dorsal spinal cord neurons. J Neurosci. 2008;28(6):1498–508.

    Article  CAS  PubMed  Google Scholar 

  60. Hoagland EN et al. Identification of a calcium permeable human acid-sensing ion channel 1 transcript variant. J Biol Chem. 2010;285(53):41852–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Jiang Q, Zha XM, Chu XP. Inhibition of human acid-sensing ion channel 1b by zinc. Int J Physiol Pathophysiol Pharmacol. 2012;4(2):84–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Diochot S et al. Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature. 2012;490(7421):552–5.

    Article  CAS  PubMed  Google Scholar 

  63. Kasumu A, Bezprozvanny I. Deranged calcium signaling in Purkinje cells and pathogenesis in spinocerebellar ataxia 2 (SCA2) and other ataxias. Cerebellum, 2010.

  64. Liu J et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci. 2009;29(29):9148–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Chen X et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci. 2008;28(48):12713–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Ikeda Y et al. Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet. 2006;38(2):184–90.

    Article  CAS  PubMed  Google Scholar 

  67. Lorenzo DN et al. Spectrin mutations that cause spinocerebellar ataxia type 5 impair axonal transport and induce neurodegeneration in Drosophila. J Cell Biol. 2010;189(1):143–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Watase K et al. Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant CaV2.1 channels. Proc Natl Acad Sci U S A. 2008;105(33):11987–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Adachi N et al. Enzymological analysis of mutant protein kinase C gamma causing spinocerebellar ataxia type 14 and dysfunction in Ca2+ homeostasis. J Biol Chem. 2008;283(28):19854–63.

    Article  CAS  PubMed  Google Scholar 

  70. Iwaki A et al. Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. J Med Genet. 2008;45(1):32–5.

    Article  CAS  PubMed  Google Scholar 

  71. Marelli C et al. SCA15 due to large ITPR1 deletions in a cohort of 333 white families with dominant ataxia. Arch Neurol. 2011;68(5):637–43.

    PubMed Central  PubMed  Google Scholar 

  72. Di Gregorio E et al. Two Italian families with ITPR1 gene deletion presenting a broader phenotype of SCA15. Cerebellum. 2010;9(1):115–23.

    Article  PubMed  Google Scholar 

  73. Knight MA et al. Spinocerebellar ataxia type 15 (sca15) maps to 3p24.2-3pter: exclusion of the ITPR1 gene, the human orthologue of an ataxic mouse mutant. Neurobiol Dis. 2003;13(2):147–57.

    Article  CAS  PubMed  Google Scholar 

  74. Dougherty SE et al. Disruption of Purkinje cell function prior to huntingtin accumulation and cell loss in an animal model of Huntington disease. Exp Neurol. 2012;236(1):171–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Airaksinen MS et al. Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl Acad Sci U S A. 1997;94(4):1488–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Schwaller B, Meyer M, Schiffmann S. ‘New’ functions for ‘old’ proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum. 2002;1(4):241–58.

    Article  CAS  PubMed  Google Scholar 

  77. Vecellio M et al. Alterations in Purkinje cell spines of calbindin D-28k and parvalbumin knock-out mice. Eur J Neurosci. 2000;12(3):945–54.

    Article  CAS  PubMed  Google Scholar 

  78. Serra HG et al. Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transgenic mice. Hum Mol Genet. 2004;13(20):2535–43.

    Article  CAS  PubMed  Google Scholar 

  79. Garthwaite G, Williams GD, Garthwaite J. Glutamate toxicity: an experimental and theoretical analysis. Eur J Neurosci. 1992;4(4):353–60.

    Article  PubMed  Google Scholar 

  80. Ellgaard L, Molinari M, Helenius A. Setting the standards: quality control in the secretory pathway. Science. 1999;286(5446):1882–8.

    Article  CAS  PubMed  Google Scholar 

  81. Greger IH, Khatri L, Ziff EB. RNA editing at arg607 controls AMPA receptor exit from the endoplasmic reticulum. Neuron. 2002;34(5):759–72.

    Article  CAS  PubMed  Google Scholar 

  82. Standley S et al. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron. 2000;28(3):887–98.

    Article  CAS  PubMed  Google Scholar 

  83. Sherwood TW, Askwith CC. Dynorphin opioid peptides enhance acid-sensing ion channel 1a activity and acidosis-induced neuronal death. J Neurosci. 2009;29(45):14371–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Grunder S, Chen X. Structure, function, and pharmacology of acid-sensing ion channels (ASICs): focus on ASIC1a. Int J Physiol Pathophysiol Pharmacol. 2010;2(2):73–94.

    PubMed Central  PubMed  Google Scholar 

  85. Sluka KA, Winter OC, Wemmie JA. Acid-sensing ion channels: a new target for pain and CNS diseases. Curr Opin Drug Discov Dev. 2009;12(5):693–704.

    CAS  Google Scholar 

  86. Lv RJ et al. ASIC1a polymorphism is associated with temporal lobe epilepsy. Epilepsy Res. 2011;96(1–2):74–80.

    Article  CAS  PubMed  Google Scholar 

  87. Liang L et al. The expression and phosphorylation of acid sensing ion channel 1a in the brain of a mouse model of phenylketonuria. Int J Neurosci. 2011;121(7):399–404.

    Article  CAS  PubMed  Google Scholar 

  88. Matricon J et al. Spinal cord plasticity and acid-sensing ion channels involvement in a rodent model of irritable bowel syndrome. Eur J Pain. 2011;15(4):335–43.

    Article  CAS  PubMed  Google Scholar 

  89. Baconguis I, Gouaux E. Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes. Nature. 2012;489(7416):400–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the University of Mississippi Medical Center’s Intramural Research Support Program Grant to PJS Vig.

Conflict of Interest

There is no conflict of interest. The data reported in this manuscript has not been published or submitted for publication elsewhere. All authors have agreed to the contents of this article and there are no ethical issues involved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parminder J. S. Vig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vig, P.J.S., Hearst, S.M., Shao, Q. et al. Knockdown of Acid-Sensing Ion Channel 1a (ASIC1a) Suppresses Disease Phenotype in SCA1 Mouse Model. Cerebellum 13, 479–490 (2014). https://doi.org/10.1007/s12311-014-0563-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0563-6

Keywords

Navigation