Skip to main content
Log in

Fault reactivation with rapid slip along subsidiary faults in the Yangsan Fault zone, SE Korea

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

Earthquake fault slip accompanied by surface ruptures may occur not only along main fault cores but also along subsidiary faults in damage zones of major (or mature) faults. Nevertheless, most previous studies of fault and earthquake geology have focused on geological observations of main core zones rather than subsidiary faults. We conducted microstructural and mineralogical analyses of fault rock materials from two subsidiary faults (F1 and F2) of the NNE-SSW-striking Yangsan Fault, which is a major strike-slip fault in southeastern Korea (F1 at Pohang Bogyeongsa and F2 at Ulsan Eonyang-Bangok), to understand their possible slip zone processes and slip behaviors. The fault cores of the subsidiary faults are up to 20 cm thick and are composed of clay-rich gouge bands measuring a few millimeters in thickness and enclosed fractured lenses. Microscopic observations reveal that linear, and narrow micro-scale principal slip zones (micro-PSZs; < 20 µm thick), which are characterized by strong preferred orientation of clay minerals, occur not only at the boundaries between the gouge band and adjacent fault rocks but also in the central part of the gouge band. Along the micro-PSZs, microstructures such as clasts truncated by rapid slip localization and gouge injections by thermal pressurization of wet gouge materials during rapid slip are observed. Thus, the structures together may indicate the occurrence of seismic slip on the subsidiary faults. Mineralogical analyses reveal that the total clay fractions (consisting mainly of illite, chlorite, and kaolin) of the gouge materials of F1 and F2 are 60.1 and 59.7 wt%, respectively. The gouge band of F2 is enriched with kaolin (59.7 wt%), which is regarded as a gouge material that can trigger dynamic weakening by dehydration-induced thermal pressurization during seismic slip. Therefore, these results imply that the kaolin-rich gouge band in F2 may be dynamically weakened when seismic reactivation occurs along F2. This study shows that a comprehensive investigation of slip behaviors of subsidiary faults as well as main fault cores is necessary to improve our understanding of the seismic faulting mechanisms of major tectonic fault zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aretusini, S., Mittempergher, S., Plumper, O., Spagnuolo, E., Gualtieri, A.F., and Di Toro, G., 2017, Production of nanoparticles during experimental deformation of smectite and implications for seismic slip. Earth and Planetary Science Letters, 463, 221–231. https://doi.org/10.1016/j.epsl.2017.01.048

    Article  Google Scholar 

  • Balsamo, F., Aldega, L., De Paola, N., Faoro, I., and Storti, F., 2014, The signature and mechanics of earthquake ruptures along shallow creeping faults in poorly lithified sediments. Geology, 42, 435–438. https://doi.org/10.1130/G35272.1

    Article  Google Scholar 

  • Balsamo, F. and Storti, F., 2011, Size-dependent comminution, tectonic mixing, and sealing behavior of a “structurally oversimplified” fault zone in poorly lithified sands: evidence for a coseismic rupture? Geological Society of America Bulletin Bulletin, 123, 601–619. https://doi.org/10.1130/B30099.1

    Article  Google Scholar 

  • Ben-Zion, Y. and Sammis, C.G., 2003, Characterization of fault zones. Pure and Applied Geophysics, 160, 677–715. https://doi.org/10.1007/PL00012554

    Article  Google Scholar 

  • Brantut, N., Schubnel, A., Rouzaud, J.N., Brunet, F., and Shimamoto, T., 2008, High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics. Journal of Geophysical Research: Solid Earth, 113, B10401. https://doi.org/10.1029/2007JB005551

    Article  Google Scholar 

  • Caine, J.S., Evans, J.P., and Forster, C.B., 1996, Fault zone architecture and permeability structure. Geology, 24, 1025–1028. https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2

    Article  Google Scholar 

  • Chae, B.-G. and Chang, T.W., 1994, Movement history of Yangsan Fault and its helated fractures at Chongha-Yongdok area, Korea. Jounal of the Geological Society of Korea, 30, 379–394. (in Korean with English abstract)

    Google Scholar 

  • Chang, C.-J. and Chang, T.W., 2009, Behavioral characteristics of the Yangsan Fault based on geometric analysis of fault slip. The Journal of Engineering Geology, 19, 277–285. (in Korean with English abstract)

    Google Scholar 

  • Chang, K.H., Woo, B.G., Lee, J.H., Park, S.O., and Yao, A., 1990, Cretaceous and Early Cenozoic stratigraphy and history of eastern Kyongsang Basin, S. Korea. Journal of the Geological Society of Korea, 26, 471–487.

    Google Scholar 

  • Cheon, Y., Cho, H., Ha, S., Kang, H.-C., Kim, J.-S., and Son, M., 2019, Tectonically controlled multiple stages of deformation along the Yangsan Fault Zone, SE Korea, since Late Cretaceous. Journal of Asian Earth Sciences, 170, 188–207. https://doi.org/10.1016/jjse-aes.2018.11.003

    Article  Google Scholar 

  • Cheon, Y., Choi, J.-H., Choi, Y., Bae, H., Han, K.-H., Son, M., Choi, S.-J., and Ryoo, C.-R., 2020b, Understanding the distribution and internal structure of the main core of the Yangsan Fault Zone: current trends and future work. Journal of the Geological Society of Korea, 56, 619–640. (in Korean with English abstract) https://doi.org/10.14770/jgsk.2020.56.5.619

    Article  Google Scholar 

  • Cheon, Y., Choi, J.-H., Kim, N., Lee, H., Choi, I., Bae, H., Rockwell, T.K., Lee, S.R., Ryoo, C.-R., Choi, H., and Lee, T.H., 2020a, Late Quaternary transpressional earthquakes on a long-lived intraplate fault: a case study of the Southern Yangsan Fault, SE Korea. Quaternary International, 553, 132–143. https://doi.org/10.1016/j.quaint2020.07.025

    Article  Google Scholar 

  • Cheon, Y., Ha, S., Lee, S., Cho, H., and Son, M., 2017, Deformation features and history of the Yangsan Fault Zone in the Eonyang-Gyeongju area, SE Korea. Journal of the Geological Society of Korea, 53, 95–114. (in Korean with English abstract) https://doi.org/10.14770/jgsk.2017.53.1.95

    Article  Google Scholar 

  • Chester, F.M. and Chester, J.S., 1998, Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California. Tectonophysics, 295, 199–221. https://doi.org/10.1016/S0040-1951(98)00121-8

    Article  Google Scholar 

  • Choi, J.-H., Edwards, P., Ko, K., and Kim, Y.-S., 2016, Definition and classification of fault damage zones: a review and a new methodological approach. Earth-Science Reviews, 152, 70–87. https://doi.org/10.1016/j.earscirev.2015.11.006

    Article  Google Scholar 

  • Choi, J.-H., Klinger, Y., Ferry, M., Ritz, J.-F., Kurtz, R., Rizza, M., Bollinger, L., Davaasambuu, B., Tsend-Ayush, N., and Demberel, S., 2018, Geologic inheritance and earthquake rupture processes: the 1905 M ≥ 8 Tsetserleg-Bulnay strike-slip earthquake sequence, Mongolia. Journal of Geophysical Research: Solid Earth, 123, 1925–1953. https://doi.org/10.1002/2017JB013962

    Article  Google Scholar 

  • Choi, J.-H., Yang, S.-J., and Kim, Y.-S., 2009, Fault zone classification and structural characteristics of the southern Yangsan fault in the Sangcheon-ri area, SE Korea. Journal of the Geological Society of Korea, 45, 9–28. (in Korean with English abstract)

    Google Scholar 

  • Chwae, U., Lee, D.Y., Lee, B.J., Ryoo, C.R., Choi, P.Y., Choi, S.J., Cho, D.L., Kim, J.Y., Lee, C.B., Kee, W.S., Yang, D.Y., Kim, I.J., Kim, Y., Yoo, J.H., Chae, B.G., Kim, W.Y., Kang, P.J., Yu, I.H., and Lee, H.K., 1998a, An investigation and evaluation of capable faults: southeastern part of the Korean Peninsula. Report KR-98(C)-22, Korea Institute of Geoscience and Mineral Resources, Daejeon, 301 p. (in Korean with English abstract)

    Google Scholar 

  • Chwae, U., Ryoo, C.-R., Kee, W.-S., Lee, B.J., Lee, B.J., Hwang, J.H., Park, K.H., Choi, Y.S., Choi, S.-J., Choi, P., Cho, D.-L., Kim, B.-C., Song, K.-Y., Chae, B.-G., Kim, W.-Y., Kim, J.-Y., Lee, S.-K., Cho, S.-J., Hwang, S., Hwang, H.S., Kim, Y.-S., Hyun, H.-J., Park, I.-H., Lee, H.-I., Lee, D.Y., Lee, C.-B., Kim, J.-Y., Yang, D.Y., Park, D.-W., Shin, S.-C., Kim, Y.S., Kim, I.-J., Yoo, J.-H., Jin, M.-S., Jun, M.-S., Chi, H.-C., Jeon, J.-S., Shin, I.-C., Kang, I.-B., Shin, H.M., Kwon, M.C., Oh, S.J., Kim, S.G., Yim, M.S., Kim, S.G., and Jeong, H.Y., 1998b, Final report of the re-evaluation to the design base earthquake considering the Yangsan fault (1). Report KR-B-255-1998, Korea Institute of Geoscience and Mineral Resources, Daejeon, 1694 p. (in Korean)

    Google Scholar 

  • Collettini, C., Niemeijer, A., Viti, C., and Marone, C., 2009, Fault zone fabric and fault weakness. Nature, 462, 907–910. https://doi.org/10.1038/nature08585

    Article  Google Scholar 

  • Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., and Shimamoto, T., 2011, Fault lubrication during earthquakes. Nature, 471, 494–498. https://doi.org/10.1038/nature09838

    Article  Google Scholar 

  • Faulkner, D.R., Lewis, A.C., and Rutter, E.H., 2003, On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain. Tectonophysics, 367, 235–251. https://doi.org/10.1016/S0040-1951(03)00134-3

    Article  Google Scholar 

  • Faulkner, D.R., Mitchell, T.M., Jensen, E., and Cembrano, J., 2011, Scaling of fault damage zones with displacement and the implications for fault growth processes. Journal of Geophysical Research: Solid Earth, 116, B05403. https://doi.org/10.1029/2010JB007788

    Article  Google Scholar 

  • Fondriest, M., Smith, S.A., Candela, T., Nielsen, S.B., Mair, K., and Di Toro, G., 2013, Mirror-like faults and power dissipation during earthquakes. Geology, 41, 1175–1178. https://doi.org/10.1130/G3464L1

    Article  Google Scholar 

  • French, M.E. and Chester, J.S., 2018, Localized slip and associated fluidized structures record seismic slip in clay-rich fault gouge. Journal of Geophysical Research: Solid Earth, 123, 8568–8588. https://doi.org/10.1029/2018JB016053

    Article  Google Scholar 

  • Gold, R.D., Reitman, N.G., Briggs, R.W., Barnhart, W.D., Hayes, G.P., and Wilson, E., 2015, On-and off-fault deformation associated with the September 2013 MW 7.7 Balochistan earthquake: Implications for geologic slip rate measurements. Tectonophysics, 660, 65–78. https://doi.org/10.1016/j.tecto.2015.08.019

    Article  Google Scholar 

  • Haines, S.H., van der Pluijm, B.A., Ikari, M.J., Saffer, D.M., and Marone, C., 2009, Clay fabric intensity in natural and artificial fault gouges: implications for brittle fault zone processes and sedimentary basin clay fabric evolution. Journal of Geophysical Research: Solid Earth, 114, B05406. https://doi.org/10.1029/2008JB005866

    Article  Google Scholar 

  • Han, R., Hirose, T., and Shimamoto, T., 2010, Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates. Journal of Geophysical Research: Solid Earth, 115, B03412. https://doi.org/10.1029/2008JB006136

    Article  Google Scholar 

  • Han, R., Hirose, T., Shimamoto, T., Lee, Y., and Ando, J.I., 2011, Granular nanoparticles lubricate faults during seismic slip. Geology, 39, 599–602. https://doi.org/10.1130/G31842.1

    Article  Google Scholar 

  • Han, R., Kim, C.-M., Woo, S., Jeong, G.Y., and Hirose, T., 2020, Structural records and mechanical characteristics of seismic slip along an active fault crosscutting unconsolidated Quaternary sediments: Suryum fault, SE Korea. Geosciences Journal, 24, 379–389. https://doi.org/10.1007/s12303-019-0037-4

    Article  Google Scholar 

  • Han, R., Shimamoto, T., Hirose, T., Ree, J.H., and Ando, J.I., 2007, Ultralow friction of carbonate faults caused by thermal decomposition. Science, 316, 878–881. https://doi.org/10.1126/science.1139763

    Article  Google Scholar 

  • Hirono, T., Tsuda, K., Tanikawa, W., Ampuero, J.P., Shibazaki, B., Kinoshita, M., and Mori, J.J., 2016, Near-trench slip potential of megaquakes evaluated from fault properties and conditions. Scientific Reports, 6, 1–13. https://doi.org/10.1038/srep28184

    Article  Google Scholar 

  • Hirose, T. and Bystricky, M., 2007, Extreme dynamic weakening of faults during dehydration by coseismic shear heating. Geophysical Research Letters, 34, L14311. https://doi.org/10.1029/2007GL030049

    Article  Google Scholar 

  • Hirose, T. and Shimamoto, T., 2005, Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. Journal of Geophysical Research: Solid Earth, 110, B05202. https://doi.org/10.1029/2004JB003207

    Article  Google Scholar 

  • Hwang, B.-H., Ernst, W.G., and Yang, K., 2012, Two different magma series imply a Palaeogene tectonic transition from contraction to extension in the SE Korean Peninsula. International Geology Review, 54, 1284–1295. https://doi.org/10.1080/00206814.2011.636990

    Article  Google Scholar 

  • Hwang, B.-H., McWilliams, M., Son, M., and Yang, K., 2007, Tectonic implication of A-type granites across the Yangsan fault, Gigye and Gyeongju areas, southeast Korean Peninsula. International Geology Review, 49, 1094–1102. https://doi.org/10.2747/0020-6814.49.12.1094

    Article  Google Scholar 

  • Ikari, M.J., 2015, Principal slip zones: precursors but not recorders of earthquake slip. Geology, 43, 955–958. https://doi.org/10.1130/G37028.1

    Article  Google Scholar 

  • Ikari, M.J., Marone, C., and Saffer, D.M., 2011, On the relation between fault strength and frictional stability. Geology, 39, 83–86. https://doi.org/10.1130/G31416.1

    Article  Google Scholar 

  • Ikari, M.J., Saffer, D.M., and Marone, C., 2009, Frictional and hydrologic properties of clay-rich fault gouge. Journal of Geophysical Research: Solid Earth, 114, B05409. https://doi.org/10.1029/2008JB006089

    Article  Google Scholar 

  • Ishikawa, T., Tanimizu, M., Nagaishi, K., Matsuoka, J., Tadai, O., Sakaguchi, M., Hirono, T., Mishima, T., Tanikawa, W., Lin, W., Kikuta, H., and Song, S.R., 2008, Coseismic fluid-rock interactions at high temperatures in the Chelungpu fault. Nature Geoscience, 1, 679–683. https://doi.org/10.1038/ngeo308

    Article  Google Scholar 

  • Janssen, C., Kanitpanyacharoen, W., Wenk, H.R., Wirth, R., Morales, L., Rybacki, E., Kienast, M., and Dresen, G., 2012, Clay fabrics in SAFOD core samples. Journal of Structural Geology, 43, 118–127. https://doi.org/10.1016/j.jsg.2012.07.004

    Article  Google Scholar 

  • Kaneki, S., Oohashi, K., Hirono, T., and Noda, H., 2020, Mechanical amorphization of synthetic fault gouges during rotary-shear friction experiments at subseismic to seismic slip velocities. Journal of Geophysical Research: Solid Earth, 125, e2020JB019956. https://doi.org/10.1029/2020JB019956

    Google Scholar 

  • Kim, C.-M., Ha, S., and Son, M., 2020, Evidence of coseismic slip recorded by Quaternary fault materials and microstructures, Naengsuri, Pohang. Journal of the Geological Society of Korea, 56, 175–192. (in Korean with English abstract) https://doi.org/10.14770/jgsk.2020.56.2.175

    Article  Google Scholar 

  • Kim, C.-M., Han, R., Jeong, G.Y., Jeong, J.O., and Son, M., 2016a, Internal structure and materials of the Yangsan fault, Bogyeongsa area, Pohang, South Korea. Geosciences Journal, 20, 759–773. https://doi.org/10.1007/s12303-016-0019-8

    Article  Google Scholar 

  • Kim, J.-Y., 1993, Fault system and fracture zone of the Yangsan Fault. Journal of Korean Earth Science Society, 14, 281–299. (in Korean with English abstract)

    Google Scholar 

  • Kim, K.H., Kang, T.S., Rhie, J., Kim, Y., Park, Y., Kang, S.Y., and Kong, C., 2016c, The 12 September 2016 Gyeongju earthquakes: 2. Temporary seismic network for monitoring aftershocks. Geosciences Journal, 20, 753–757. https://doi.org/10.1007/s12303-016-0034-9

    Article  Google Scholar 

  • Kim, K.H., Kim, J., Han, M., Kang, S.Y., Son, M., Kang, T.S., Rhie, J., Kim, Y.H., Park, Y., Kim, H.-J., You, Q., and Hao, T., 2018, Deep fault plane revealed by high-precision locations of early aftershocks following the 12 September 2016 ML 5.8 Gyeongju, Korea, Earthquake. Bulletin of the Seismological Society of America, 108, 517–523. https://doi.org/10.1785/0120170104

    Article  Google Scholar 

  • Kim, Y., Rhie, J., Kang, T.S., Kim, K.H., Kim, M., and Lee, S.J., 2016b, The 12 September 2016 Gyeongju earthquakes: 1. Observation and remaining questions. Geosciences Journal, 20, 747–752. https://doi.org/10.1007/s12303-016-0033-x

    Article  Google Scholar 

  • Kim, Y.-S., Jin, K., Choi, W.-H., and Kee, W.-S., 2011a, Understanding of active faults: a review for recent researches. Journal of the Geological Society of Korea, 47, 723–752. (in Korean with English abstract)

    Google Scholar 

  • Kim, Y.-S., Kihm, J.H., and Jin, K., 2011b, Interpretation of the rupture history of a low slip-rate active fault by analysis of progressive displacement accumulation: an example from the Quaternary Eupcheon Fault, SE Korea. Journal of the Geological Society, 168, 273–288. https://doi.org/10.1144/0016-76492010-088

    Article  Google Scholar 

  • Kim, Y.-S., Park, J.-Y., Kim, J.H., Shin, H.C., and Sanderson, D.J., 2004, Thrust geometries in unconsolidated Quaternary sediments and evolution of the Eupchon Fault, southeast Korea. Island Arc, 13, 403–415. https://doi.org/10.1111/j.1440-1738.2004.00435.x

    Article  Google Scholar 

  • Koh, S.-.M., Takagi, T., Kim, M.-Y., Naito, K., Hong, S.-S., and Sudo, S., 2000, Geological and geochemical characteristics of the hydrothermal clay alteration in South Korea. Resource Geology, 50, 229–242.

    Article  Google Scholar 

  • Kyung, J.-B., Lee, K., and Okada, A., 1999, A paleoseismological study of the Yangsan Fault — analysis of deformed topograghy and trench survey. Journal of Korean Geophysical Society, 2, 155–168. (in Korean with English abstract)

    Google Scholar 

  • Lee, B.J., Choi, S.-J., Chwae, U.-C., and Ryoo, C.-R., 1999, Characteristics of the Quaternary faulting of the Wolpyeong, Yangsan, S.E. Korea. Journal of the Geological Society of Korea, 35, 179–188. (in Korean with English abstract)

    Google Scholar 

  • Lee, H.-K. and Schwarcz, H.S., 2001, ESR dating of the subsidiary faults in the Yangsan fault system, Korea. Quaternary Science Reviews, 20, 999–1003. https://doi.org/10.1016/S0277-3791(00)00055-X

    Article  Google Scholar 

  • Lee, J., Rezaei, S., Hong, Y., Choi, J.-H., Choi, W.-H., Rhee, K.-W., and Kim, Y.-S., 2015, Quaternary fault analysis through a trench investigation on the northern extension of the Yangsan fault at Danguri, Gyungju-si, Gyeongsangbuk-do. Journal of the Geological Society of Korea, 51, 471–485 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.5.471

    Article  Google Scholar 

  • Lee, K., 1985, On the seismic activity of the Yangsan Fault. Journal of Geological Society of Korea, 21, 38–44 (in Korean).

    Google Scholar 

  • Lin, A., Yamashita, K., and Tanaka, M., 2013, Repeated seismic slips recorded in ultracataclastic veins along active faults of the Arima-Takatsuki Tectonic Line, Southwest Japan. Journal of Structural Geology, 48, 3–13. https://doi.org/10.1016/j.jsg.2013.01.005

    Article  Google Scholar 

  • Lockner, D.A., Morrow, C., Moore, D., and Hickman, S., 2011, Low strength of deep San Andreas fault gouge from SAFOD core. Nature, 472, 82–85. https://doi.org/10.1038/nature09927

    Article  Google Scholar 

  • Ma, K.F., Tanaka, H., Song, S.R., Wang, C.Y., Hung, J.H., Tsai, Y.B., Mori, J., Song, Y.-F., Yeh, E.-C., Soh, W., Sone, H., Kuo, L.-W., and Wu, H.Y., 2006, Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature, 444, 473–476. https://doi.org/10.1038/nature05253

    Article  Google Scholar 

  • Marone, C. and Scholz, C.H., 1988, The depth of seismic faulting and the upper transition from stable to unstable slip regimes. Geophysical Research Letters, 15, 621–624. https://doi.org/10.1029/GL015i006p00621

    Article  Google Scholar 

  • Morrow, C., Radney, B., and Byerlee, J., 1992, Frictional strength and the effective pressure law of montmorillonite and illite clays. International Geophysics, 51, 69–88. https://doi.org/10.1016/S0074-6142(08)62815-6

    Article  Google Scholar 

  • Noda, H. and Lapusta, N., 2013, Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature, 493, 518–521. https://doi.org/10.1038/nature11703

    Article  Google Scholar 

  • Ohtani, T., Fujimoto, K., Ito, H., Tanaka, H., Tomida, N., and Higuchi, T., 2000, Fault rocks and past to recent fluid characteristics from the borehole survey of the Nojima fault ruptured in the 1995 Kobe earthquake, Southwest Japan. Journal of Geophysical Research: Solid Earth, 105, 16161–16171. https://doi.org/10.1029/2000JB900086

    Article  Google Scholar 

  • Otsuki, K., Monzawa, N., and Nagase, T., 2003, Fluidization and melting of fault gouge during seismic slip: identification in the Nojima fault zone and implications for focal earthquake mechanisms. Journal of Geophysical Research, 108, 2192. https://doi.org/10.1029/2001JB001711

    Article  Google Scholar 

  • Ree, J.-H., Lee, Y.-J., Rhodes, E.J., Park, Y., Kwon, S.-T., Chwae, U., Jeon, J.-S., and Lee, B., 2003, Quaternary reactivation of Tertiary faults in the southeastern Korean Peninsula: age constraint by optically stimulated luminescence dating. Island Arc, 12, 1–12. https://doi.org/10.1046/j.1440-1738.2003.00372.x

    Article  Google Scholar 

  • Rice, J.R., 2006, Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth, 111, B05311. https://doi.org/10.1029/2005JB004006

    Article  Google Scholar 

  • Rowe, C., Kirkpatrick, J.D., and Brodsky, E.E., 2012, Fault rock injections record paleo-earthquakes. Earth and Planetary Science Letters, 335–336, 154–166, https://doi.org/10.1016/j.epsl.2012.04.015

    Article  Google Scholar 

  • Saffer, D.M. and Marone, C., 2003, Comparison of smectite-and illiterich gouge frictional properties: application to the updip limit of the seismogenic zone along subduction megathrusts. Earth and Planetary Science Letters, 215, 219–235. https://doi.org/10.1016/S0012-821X(03)00424-2

    Article  Google Scholar 

  • Sibson, R.H., 1973, Interactions between temperature and pore-fluid pressure during earthquake faulting and a mechanism for partial or total stress relief. Nature Physical Science, 243, 66–68. https://doi.org/10.1038/physci243066a0

    Article  Google Scholar 

  • Sibson, R.H., 1977, Fault rocks and fault mechanisms. Journal of the Geological Society, 133, 191–213. https://doi.org/10.1144/gsjgs.133.3.0191

    Article  Google Scholar 

  • Sibson, R.H., 2003, Thickness of the seismic slip zone. Bulletin of the Seismological Society of America, 93, 1169–1178. https://doi.org/10.1785/0120020061

    Article  Google Scholar 

  • Siman-Tov, S., Aharonov, E., Sagy, A., and Emmanuel, S., 2013, Nanograins form carbonate fault mirrors. Geology, 41, 703–706. https://doi.org/10.1130/G34087.1

    Article  Google Scholar 

  • Smeraglia, L., Bettucci, A., Billi, A., Carminati, E., Cavallo, A., Di Toro, G., and Spagnuolo, E., 2017, Microstructural evidence for seismic and aseismic slips along clay-bearing, carbonate faults. Journal of Geophysical Research: Solid Earth, 122, 3895–3915. https://doi.org/10.1002/2017JB014042

    Article  Google Scholar 

  • Smith, S.A.F., Billi, A., Toro, G.D., and Spiess, R., 2011, Principal slip zones in limestone: microstructural characterization and implications for the seismic cycle (Tre Monti Fault, Central Apennines, Italy). Pure and Applied Geophysics, 168, 2365–2393. https://doi.org/10.1007/s00024-011-0267-5

    Article  Google Scholar 

  • Solum, J.G., van der Pluijm, B.A., and Peacor, D.R., 2005, Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah. Journal of Structural Geology, 27, 1563–1576. https://doi.org/10.1016/j.jsg.2005.05.002

    Article  Google Scholar 

  • Song, C.W., 2015, Study on the evolution of the Miocene Pohang basin based on its structural characteristics. Ph.D. Thesis, Pusan National University, Busan, 108 p. (in Korean with English abstract)

    Google Scholar 

  • Song, Y., Ha, S., Lee, S., Kang, H.-C., Choi, J.-H., and Son, M., 2020, Quaternary structural characteristics and paleoseismic interpretation of the Yangsan Fault at Dangu-ri, Gyeongju-si, SE Korea, through trench survey. Journal of the Geological Society of Korea, 56, 155–173. (in Korean with English abstract) https://doi.org/10.14770/jgsk.2020.56.2.155

    Article  Google Scholar 

  • Ujiie, K., Tanaka, H., Saito, T., Tsutsumi, A., Mori, J.J., Kameda, J., Brodsky, E.E., Chester, F.M., Eguchi, N., and Toczko, S., 2013, Low coseismic shear stress on the Tohoku-Oki megathrust determined from laboratory experiments. Science, 342, 1211–1214. https://doi.org/10.1126/science.1243485

    Article  Google Scholar 

  • Valoroso, L., Chiaraluce, L., and Collettini, C., 2014, Earthquakes and fault zone structure. Geology, 42, 343–346. https://doi.org/10.1130/G35071.1

    Article  Google Scholar 

  • Verberne, B.A., Spiers, C.J., Niemeijer, A.R., De Bresser, J.H.P., De Winter, D.A.M., and Plümper, O., 2014, Frictional properties and microstructure of calcite-rich fault gouges sheared at sub-seismic sliding velocities. Pure and Applied Geophysics, 171, 2617–2640. https://doi.org/10.1007/s00024-013-0760-0

    Article  Google Scholar 

  • Vrolijk, P. and van der Pluijm, B.A., 1999, Clay gouge. Journal of Structural Geology, 21, 1039–1048. https://doi.org/10.1016/S0191-8141(99)00103-0

    Article  Google Scholar 

  • Wang, J., Li, T., Gu, Y.J., Schultz, R., Yusifbayov, J., and Zhang, M., 2020, Sequential fault reactivation and secondary triggering in the March 2019 Red Deer induced earthquake swarm. Geophysical Research Letters, 47, e2020GL090219. https://doi.org/10.1029/2020GL090219

    Article  Google Scholar 

  • Wibberley, C.A. and Shimamoto, T., 2003, Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan. Journal of Structural Geology, 25, 59–78. https://doi.org/10.1016/S0191-8141(02)00014-7

    Article  Google Scholar 

  • Wibberley, C.A.J. and Shimamoto, T., 2005, Earthquake slip weakening and asperities explained by thermal pressurization. Nature, 436, 689–692. https://doi.org/10.1038/nature03901

    Article  Google Scholar 

  • Won, C.K., Kang, P.C., and Lee, S.H., 1978, Study on the tectonic interpretation and igneous pluton in the Gyeongsang basin. Journal of the Geological Society of Korea, 14, 79–92. (in Korean with English abstract)

    Google Scholar 

  • Woo, S. and Han, R., 2019, Shear tests on intact fault gouges preserving natural deformation fabrics. Journal of the Geological Society of Korea, 55, 131–139. (in Korean with English abstract) https://doi.org/10.14770/jgsk.2019.55.1.131

    Article  Google Scholar 

  • Woo, S., Han, R., Kim, C.-M., Jeong, G.Y., Jeong, J.O., and Lee, H., 2016, Relation between temporal change of fault rock materials and mechanical properties. Journal of the Geological Society of Korea, 52, 847–861. (in Korean with English abstract) https://doi.org/10.14770/jgsk.2016.52.6.847

    Article  Google Scholar 

  • Yang, J.-S. and Lee, H.-K., 2014, ESR dating of fault gouge from Gacheon 1 site on the Yangsan fault zone. Journal of the Geological Society of Korea, 48, 459–472. (in Korean with English abstract) https://doi.org/10.9719/EEG.2014.47.1.17

    Google Scholar 

  • Yukutake, Y., and Iio, Y., 2017, Why do aftershocks occur? Relationship between mainshock rupture and aftershock sequence based on highly resolved hypocenter and focal mechanism distributions. Earth, Planets and Space, 69, 1–15. https://doi.org/10.1186/s40623-017-0650-2

    Article  Google Scholar 

  • Zhang, S., Tullis, T.E., and Scruggs, V.J., 1999, Permeability anisotropy and pressure dependency of permeability in experimentally sheared gouge materials. Journal of Structural Geology, 21, 795–806. https://doi.org/10.1016/S0191-8141(99)00080-2

    Article  Google Scholar 

Download references

Acknowledgments

We thank three anonymous reviewers for their comments that improved the clarity of the manuscript. We also thank Sangwoo Woo for insightful discussions of the preliminary results of this study. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2C1008082) and the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Korean Ministry of Science and ICT (GP2020-014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Min Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, CM., Cheon, Y., Han, R. et al. Fault reactivation with rapid slip along subsidiary faults in the Yangsan Fault zone, SE Korea. Geosci J 26, 167–181 (2022). https://doi.org/10.1007/s12303-021-0027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-021-0027-1

Key words

Navigation