Skip to main content
Log in

Variable slip mode in the past 3300 years on the fault ruptured in the 2012 M 5.6 Pernik slow earthquake in Bulgaria

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The 2012 M5.6 Pernik earthquake in Bulgaria proceeded at slow slip rates and was accompanied with ground failure along the Meshtitsa fault scarp. Our investigation through paleoseismological trenching techniques and electrical resistivity tomography discovered a broad zone with multiple fault cores. In a trench, a 40-m-thick montmorillonite clay stratum is embedded in coarse-grained alluvial deposits along with two narrow gouge zones; together they demonstrate a frictional heterogeneity within the fault zone. The clayey deposits had experienced frictional stability which is recorded in intersecting shear bands interpreted to have formed at slow strain rates. A steep bedding of Oligocene alluvial deposits is interpreted as a result from an earlier phase of strike-slip motion. Since transitioning to normal dip-slip motion in the late Miocene, two gouge zones located at the periphery of the clayey deposits suggest strain localization during surface-rupturing earthquakes. In alluvial sediments deposited 3300 cal BP, localized slip on one of the faults and dispersed tensile cracks in the hangingwall of the other fault likely express failures at different strain rates. We infer that it is likely that the dispersed cracks in the trench, and similarly some of the 2012 ground cracks, resulted from afterslip, which followed ruptures at depth on relatively small seismically coupled fault areas. In contrast, we interpret the slip localized in the fault cores to have occurred when most of fault area was seismically coupled in larger earthquakes. This fault expresses a variability in earthquake sizes and seismic coupling in the past 3300 cal BP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Supplementary materials contain high-resolution photomosaics of the trench walls, a diffractogram, locations of the ground cracks in a Keyhole Markup Language (KML) file format and resistivity data in the format used by the Boundless Electrical Resistivity Tomography (BERT) software. The data are available online at https://doi.org/10.5281/zenodo.8369232.

Code availability

Configuration files in BERT format for reproducing the tomograms in Fig. 11 are available in Supplementary materials.

References

  • Ambraseys N (2009) Earthquakes in the Mediterranean and middle east: a multidisciplinary study of seismicity up to 1900. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Angelova D (2001) Tectonics and relief of the Pernik depression (Bulgaria). Geol Balc 31(1–2):85–86

    Google Scholar 

  • Attaliotae M (1853) Historia: opus a Wladimiro Bruneto de Presle, instituti gallici socio, inventum descriptum correctum, Corpus scriptorum historiae Buzantinae, vol 44. Impensis Weberi, Bonn

    Google Scholar 

  • Batandjiev I, Matova M, Stoyanov S (1966) The Pernik earthquake (1965) and certain tectonic problems. Bull Geol Inst (Bulg Acad Sci) 15:313–333

    Google Scholar 

  • Beregov R (1939) On the tertiary geology in Pernik. Geol Balc 3(2):46–54

    Google Scholar 

  • Bončev E, Karagjuleva J, Kostadinov V, Manolov Ž, Kamenova J, Dinkov E, Bakalova D, Manolova R (1960) Grundlagen der Tektonik von Kraište mit den angrenzenden Gebieten. Travaux sur la Géologie de Bulgarie Série Stratigraphie et Tectonique 1:7–92

    Google Scholar 

  • Botev E, Protopopova V, Popova I, Babachkova B, Velichkova S, Tzoncheva I, Raykova P, Boychev D, Lazarov D (2012) Data and analisis of the events recorded by NOTSSI in 2012. Bulg Geophys J 38:93–102

    Google Scholar 

  • Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–360. https://doi.org/10.1017/s0033822200033865

    Article  Google Scholar 

  • Bürgmann R (2018) The geophysics, geology and mechanics of slow fault slip. Earth Planet Sci Lett 495:112–134. https://doi.org/10.1016/j.epsl.2018.04.062

    Article  CAS  Google Scholar 

  • Cheloni D, Giuliani R, D’Anastasio E, Atzori S, Walters RJ, Bonci L, D’Agostino N, Mattone M, Calcaterra S, Gambino P, Deninno F, Maseroli R, Stefanelli G (2014) Coseismic and post-seismic slip of the 2009 L’Aquila (central Italy) MW 6.3 earthquake and implications for seismic potential along the Campotosto fault from joint inversion of high-precision levelling InSAR and GPS data. Tectonophysics 622:168–185. https://doi.org/10.1016/j.tecto.2014.03.009

    Article  Google Scholar 

  • Collettini C, Barchi MR, De Paola N, Trippetta F, Tinti E (2022) Rock and fault rheology explain differences between on fault and distributed seismicity. Nat Commun 13(1):5627. https://doi.org/10.1038/s41467-022-33373-y

    Article  CAS  Google Scholar 

  • Collettini C, Niemeijer A, Viti C, Smith SAF, Marone C (2011) Fault structure, frictional properties and mixed-mode fault slip behavior. Earth Planet Sci Lett 311(3):316–327. https://doi.org/10.1016/j.epsl.2011.09.020

    Article  CAS  Google Scholar 

  • Danciu L, Nandan S, Reyes C, Basili R, Weatherill G, Beauval C, Rovida A, Vilanova S, Sesetyan K, Bard PY, Cotton F, Wiemer S, Giardini D (2021) The 2020 update of the European seismic hazard model: model overview. In: EFEHR technical report 001, v1.0.0. technical report, EFEHR European facilities of earthquake hazard and risk, https://doi.org/10.12686/a15

  • Dieterich JH (1979) Modeling of rock friction: 1. Experimental results and constitutive equations. J Geophys Res 84(B5):2161. https://doi.org/10.1029/JB084iB05p02161

    Article  Google Scholar 

  • Dineva S, Batllo J, Mihaylov D, Van Eck T (2002) Source parameters of four strong earthquakes in Bulgaria and Portugal at the beginning of the 20th century. J Seismol 6(1):99–123. https://doi.org/10.1023/A:1014249814998

    Article  Google Scholar 

  • Dineva S, Sokerova D, Michailov D (1998) Seismicity of South-Western Bulgaria and border regions. J Geodyn 26(2–4):309–325. https://doi.org/10.1016/S0264-3707(97)00075-6

    Article  Google Scholar 

  • Doetsch J, Linde N, Pessognelli M, Green AG, Günther T (2012) Constraining 3-D electrical resistance tomography with GPR reflection data for improved aquifer characterization. J Appl Geophys 78:68–76. https://doi.org/10.1016/j.jappgeo.2011.04.008

    Article  Google Scholar 

  • D’Agostino N, Métois M, Koci R, Duni L, Kuka N, Ganas A, Georgiev I, Jouanne F, Kaludjerovic N, Kandić R (2020) Active crustal deformation and rotations in the southwestern Balkans from continuous GPS measurements. Earth Planet Sci Lett 539:116246. https://doi.org/10.1016/j.epsl.2020.116246

    Article  CAS  Google Scholar 

  • EMSC (2013) European-mediterranean seismological centre. https://www.emsc-csem.org, Accessed: 2013-04-13

  • Fattahi H, Amelung F, Chaussard E, Wdowinski S (2015) Coseismic and postseismic deformation due to the 2007 M5.5 Ghazaband fault earthquake, Balochistan, Pakistan. Geophys Res Lett 42(9):3305–3312. https://doi.org/10.1002/2015GL063686

    Article  Google Scholar 

  • Filaretov S (1858) Earthquake in Sofia. Tzarigrad Newsp 9(403):2

    Google Scholar 

  • GCMT (2014) Global centroid-moment-tensor catalog. http://www.globalcmt.org/, Accessed: 2016-05-10

  • GFZ (2014) GEOFON Program Deutsches GeoForschungsZentrum (GFZ) Potsdam : : gfz2012jzll. https://www.gfz-potsdam.de, Accessed: 2016-05-10

  • Georgiev N, Henry B, Jordanova N, Froitzheim N, Jordanova D, Ivanov Z, Dimov D (2009) The emplacement mode of upper cretaceous plutons from the southwestern part of the Sredna Gora Zone (Bulgaria): structural and AMS study. Geol Carpath 60(1):15–33. https://doi.org/10.2478/v10096-009-0001-8

    Article  Google Scholar 

  • Georgiev N, Henry B, Jordanova N, Jordanova D, Naydenov K (2014) Emplacement and fabric-forming conditions of plutons from structural and magnetic fabric analysis: a case study of the Plana pluton (Central Bulgaria). Tectonophysics 629:138–154. https://doi.org/10.1016/j.tecto.2014.02.018

    Article  Google Scholar 

  • Goodwin LB, Tikoff B (2002) Competency contrast, kinematics, and the development of foliations and lineations in the crust. J Struct Geol 24(6):1065–1085. https://doi.org/10.1016/S0191-8141(01)00092-X

    Article  Google Scholar 

  • Gočev P, Kostadinov K, Matova M, Velinov I (1970) The structure of a part of the southern strip of the Western Srednogorié. Rev Bulg Geol Soc 31(3):289–301

    Google Scholar 

  • Günther T, Rücker C, Spitzer K (2006) Three-dimensional modelling and inversion of dc resistivity data incorporating topography - II Inversion. Geophys J Int 166(2):506–517. https://doi.org/10.1111/j.1365-246X.2006.03011.x

    Article  Google Scholar 

  • Harris RA (2017) Large earthquakes and creeping faults. Rev Geophys 55(1):169–198. https://doi.org/10.1002/2016RG000539

    Article  Google Scholar 

  • Ilieva M, Dimitrov D, Georgiev I, Botev E, Mouratidis A, Elias P, Briole P (2012) Primary investigation of the crust deformations after the 22 May 2012, Pernik, Bulgaria. In: International Jubilee Conference UACEG2012: Science & Practice, vol 1. University of architecture, civil engineering and geodesy, Sofia

  • Ivanoff I (1960) Géomorphologie du bassin de Dimitrovo. Ann Univ Sofia Geogr 3(53):3–48

    Google Scholar 

  • Ivanov V (2017) Tectonics of Bulgaria. Sofia University Press, Sofia

    Google Scholar 

  • Kamenov B (1964) Über die stratigraphie-und kohlengehalt des palaogens von Pernik-braunkohlenbecken. Bull Inst Sci Rech Géol (Sofia) 1:233–246

    Google Scholar 

  • Kamenov B, Kojumdgieva E (1983) Stratigraphie du Neogene dans le bassin de Sofia. Palaeontol Stratigr Lithol (Bulg Acad Sci) 18:69–85

    Google Scholar 

  • Kastelic V, Radulov A, Glavatovic (2011) Improving the resolution of seismic hazard estimates for critical facilities: the database of Eastern Europe crustal seismogenic sources in the frame of the SHARE project. In: 30 Convegno Nazionale GNGTS, Trieste, pp 218–221

  • Kostadinov V (1974) Block structure of a part of the Norteastern section of the Kraištides in Bulgaria. Bull Geol Inst Ser Geotecton (Bulg Acad Sci) 23:93–117

    Google Scholar 

  • Kounov A, Burg JP, Bernoulli D, Seward D, Ivanov Z, Dimov D, Gerdjikov I (2011) Paleostress analysis of Cenozoic faulting in the Kraishte area SW Bulgaria. J Struct Geol 33(5):859–874. https://doi.org/10.1016/j.jsg.2011.03.006

    Article  Google Scholar 

  • Kounov A, Gerdjikov I (2020) The problems of the post-Cenomanian tectonic evolution of the central parts of the Sredna Gora Zone. The wrench tectonics-how real is real? Geol Balc 49(2):39–58. https://doi.org/10.52321/GeolBalc.49.2.39

    Article  Google Scholar 

  • Kounov A, Gerdjikov I, Antić MD, Georgiev N, Spikings RA (2023) Late Alpine multistage exhumation of the northwestern Rhodope metamorphic complex (northern Rila Mountains, Bulgaria). Int J Earth Sci 112(6):1635–1660. https://doi.org/10.1007/s00531-023-02321-6

    Article  CAS  Google Scholar 

  • Krstekanić N, Matenco L, Stojadinovic U, Willingshofer E, Toljić M, Tamminga D (2022) Strain partitioning in a large intracontinental strike-slip system accommodating backarc-convex orocline formation: the circum-Moesian fault system of the Carpatho-Balkanides. Global Planet Change 208:103714. https://doi.org/10.1016/j.gloplacha.2021.103714

    Article  Google Scholar 

  • Krstekanić N, Willingshofer E, Matenco L, Toljić M, Stojadinovic U (2022) The influence of back-arc extension direction on the strain partitioning associated with continental indentation: analogue modelling and implications for the Circum-Moesian fault system of South-Eastern Europe. J Struct Geol 159:104599. https://doi.org/10.1016/j.jsg.2022.104599

    Article  Google Scholar 

  • Kuras O, Pritchard JD, Meldrum PI, Chambers JE, Wilkinson PB, Ogilvy RD, Wealthall GP (2009) Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT). C R Geosci 341(10–11):868–885. https://doi.org/10.1016/j.crte.2009.07.010

    Article  Google Scholar 

  • Marinova R, Grozdev V, Ivanova D, Sinnyovsky D, Petrov I, Milovanov P, Popov A (2010) Geological map of the republic of Bulgaria 1:50 000, Map Sheet K-34-47-V (Kostinbrod). Ministry of Environment and Water, Bulgarian National Geological Survey, Sofia

  • Marinova R, Grozdev V, Ivanova D, Sinyovski D, Petrov I, Milovanov P, Popov A (2010) Geological Map of the Republic of Bulgaria 1:50 000, Map Sheet K-34-46-G (Breznik). Ministry of Environment and Water, Bulgarian National Geological Survey, Sofia

  • Matova M (1966) Une structure transversale dans les Kraichtides–Sredna Gora. Essai de prognostic seismo-tectonique. C R Acad Bulg Sci 19(1):49–52

    Google Scholar 

  • MedNet (2014) European region moment tensor search results: S201205220000A. http://www.bo.ingv.it/RCMT/searchRCMT.html, Accessed: 2016-05-10

  • Medvedev S (1953) A new seismic scale. Trudy Geofizicheskogo Instituta, Akademiya Nauk SSSR 21:148

    Google Scholar 

  • Meyer B, Sébrier M, Dimitrov D (2007) Rare destructive earthquakes in Europe: the 1904 Bulgaria event case. Earth Planet Sci Lett 253(3–4):485–496. https://doi.org/10.1016/j.epsl.2006.11.011

    Article  CAS  Google Scholar 

  • Michetti A, Esposito E, Guerrieri L, Porfido S, Serva L, Tatevossian R, Vittori E, Audemard F, Azuma T, Clague J et al (2007) Environmental seismic intensity scale–ESI 2007. Mem Descr Carta Geol D’Ital 74:7–23

    Google Scholar 

  • Moore DE, Lockner DA (2007) Friction of the smectite clay montmorillonite: a review and interpretation of data. In: Dixon TH, Moore C (eds) The Seismogenic zone of subduction thrust faults. Columbia University Press, Columbia, pp 317–345

    Chapter  Google Scholar 

  • Moskovski S (1971) On the sequence in the formation of Paleogene-Neogene graben structures in the Kraishtides in Bulgaria. Rev Bulg Geol Soc 32(1):21–31

    Google Scholar 

  • NEIC (2014) USGS National earthquake information center. m5.6 - Bulgaria. http://earthquake.usgs.gov/earthquakes/eventpage/usp000jkrw#general, Accessed: 2016-05-10

  • Naydenov K, Peytcheva I, von Quadt A, Sarov S, Kolcheva K, Dimov D (2013) The Maritsa strike-slip shear zone between Kostenets and Krichim towns, South Bulgaria—Structural, petrographic and isotope geochronology study. Tectonophysics 595–596:69–89. https://doi.org/10.1016/j.tecto.2012.08.005

    Article  CAS  Google Scholar 

  • Panayotov I (1995) The bronze age in Bulgaria: studies and problems. Prehistoric Bulgaria (Monographs in World Archaeology 22). Prehistory Press, Madison (WI), pp 243–252

    Google Scholar 

  • Pondrelli S, Salimbeni S (2015) Regional moment tensor review: an example from the European-Mediterranean region. In: Beer M, Kougioumtzoglou IA, Patelli E, Au ISK (eds) Encyclopedia of Earthquake Engineering. Springer, Berlin Heidelberg, pp 1–15. https://doi.org/10.1007/978-3-642-36197-5_301-1

    Chapter  Google Scholar 

  • Protopopova V (2013) Fault plane solutions of the 2012 Mw 5.6 Pernik (SW Bulgaria) earthquake and the strongest aftershocks. Bulg Geophys J 39:43–51

    Google Scholar 

  • Radulov A (2013) Grid-based geomorphic indices of the Meshtitsa fault scarp, western Bulgaria, and their application to identify slow-slipping faults. C R Acad Bulg Sci 66(12):1725–1732

    Google Scholar 

  • Radulov A, Dilov T, Rockwell TK, Štěpančíková P, Yaneva M, Donkova Y, Stemberk J, Sana H, Nikolov N (2023) First paleoseismic data from the Balkan Range. Tectonophysics 863:230009. https://doi.org/10.1016/j.tecto.2023.230009

    Article  Google Scholar 

  • Radulov A, Yaneva M, Shanov S, Kostov K, Nikolov V, Nikolov N (2012) Coseismic geological effects related to the May 22, 2012 Pernik earthquake, Western Bulgaria. National conference with international participation “Geosciences 2012’’. Bulgarian Geological Society, Sofia, pp 121–122

    Google Scholar 

  • Ranguelov B, Radichev R, Dimovsky S, Paskaleva I, Tzankov C, Kisiov A, Yankova M, Iliev T, Vassileva M (2013) Complex geophysical investigations–basics to the geodynamic model and seismic monitoring system in Pernik region–Project SIMORA. Annu Univ Min Geol “St. Ivan Rilski” – Sofia 56(I):150–156. https://mgu.bg/wp-content//uploads/2022/02/Vol.-56-I-2013.pdf

  • Reimer PJ, Austin WEN, Bard E, Bayliss A, Blackwell PG, Ramsey CB, Butzin M, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kromer B, Manning SW, Muscheler R, Palmer JG, Pearson C, van der Plicht J, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM, Wacker L, Adolphi F, Büntgen U et al (2020) The IntCal20 Northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725–757. https://doi.org/10.1017/RDC.2020.41

    Article  CAS  Google Scholar 

  • Rowe CD, Griffith WA (2015) Do faults preserve a record of seismic slip: a second opinion. J Struct Geol 78:1–26. https://doi.org/10.1016/j.jsg.2015.06.006

    Article  Google Scholar 

  • Ruina A (1983) Slip instability and state variable friction laws. J Geophys Res: Solid Earth 88(B12):10359–10370. https://doi.org/10.1029/JB088iB12p10359

    Article  Google Scholar 

  • Rücker C, Günther T, Spitzer K (2006) Three-dimensional modelling and inversion of DC resistivity data incorporating topography—I. Modelling. Geophys J Int 166(2):495–505. https://doi.org/10.1111/j.1365-246X.2006.03010.x

    Article  Google Scholar 

  • Scholz CH, Campos J (2012) The seismic coupling of subduction zones revisited. Solid Earth, J Geophys Res. https://doi.org/10.1029/2011JB009003

    Book  Google Scholar 

  • Sibson RH (2003) Thickness of the seismic slip zone. B Seismol Soc Am 93(3):1169–1178. https://doi.org/10.1785/0120020061

    Article  Google Scholar 

  • Solakov D, Simeonova S, Raykova P, Aleksandrova I, Popova M, Protopopova V (2016) Seismological analysis of the 2012 Mw 5.6 earthquake in Sofia seismic zone. C R Acad Bulg Sci 69(1):67–74

    Google Scholar 

  • Tranos MD, Lacombe O (2014) Late Cenozoic faulting in SW Bulgaria: fault geometry, kinematics and driving stress regimes. Implications for late orogenic processes in the Hellenic hinterland. J Geodyn 74:32–55. https://doi.org/10.1016/j.jog.2013.12.001

    Article  Google Scholar 

  • Vangelov D, Gerdjikov Y, Kounov A, Lazarova Anna (2013) The Balkan fold-thrust belt: an overview of the main features. Geol Balc 42(1–2):29–47. https://doi.org/10.52321/GeolBalc.42.1-3.29

    Article  Google Scholar 

  • Volpe G, Pozzi G, Carminati E, Barchi MR, Scuderi MM, Tinti E, Aldega L, Marone C, Collettini C (2022) Frictional controls on the seismogenic zone: insights from the Apenninic basement Central Italy. Earth Planet Sci Lett 583:117444. https://doi.org/10.1016/j.epsl.2022.117444

    Article  CAS  Google Scholar 

  • Wessel P, Luis JF, Uieda L, Scharroo R, Wobbe F, Smith WHF, Tian D (2019) The generic mapping tools version 6. Geochem Geophy Geosy 20(11):5556–5564. https://doi.org/10.1029/2019GC008515

    Article  Google Scholar 

  • Yamashita T (1980) Causes of slow earthquakes and multiple earthquakes. J Phys Earth 28(2):169–190. https://doi.org/10.4294/jpe1952.28.169

    Article  Google Scholar 

  • Zagorčev IS (1992) Neotectonics of the central parts of the Balkan Peninsula: basic features and concepts. Int J Earth Sci 81(3):635–654. https://doi.org/10.1007/BF01791382

    Article  Google Scholar 

  • Zhou J, Revil A, Karaoulis M, Hale D, Doetsch J, Cuttler S (2014) Image-guided inversion of electrical resistivity data. Geophys J Int 197(1):292–309. https://doi.org/10.1093/gji/ggu001

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Gabriel Nikolov, Anka Georgieva and Tzvetan Dilov for their assistance in the trench activities, and to Konstantin Kostov, Valentin Nikolov and Vladimir Hristov for the help during the resistivity survey. We appreciate the high competence of Stefan Alexandrov in archeology. Thanks to Yavor Stefanov for consulting sedimentological issues. The major of the village of Rasnik Ventsislav Lyubenov is acknowledged for the logistic support. The figures were created with the Generic Mapping Tools v. 6 (Wessel et al. 2019). We thank three anonymous reviewers, as well as the Editor-in-Chief, John J. Clague, for their guidance on improving the text. One of the reviewers inspired us to create the resistivity model in Fig. 11d.

Funding

The National Science Program “Environmental Protection and Reduction of Risks of Adverse Events and Natural Disasters” (D01-279/3.12.2021) contributed in part to the radiocarbon dating.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Radulov.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 11370 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radulov, A., Rockwell, T.K., Yaneva, M. et al. Variable slip mode in the past 3300 years on the fault ruptured in the 2012 M 5.6 Pernik slow earthquake in Bulgaria. Nat Hazards 120, 5309–5331 (2024). https://doi.org/10.1007/s11069-024-06426-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-024-06426-2

Keywords

Navigation