Skip to main content
Log in

Isolation and HPLC assisted quantification of two iridoid glycoside compounds and molecular DNA fingerprinting in critically endangered medicinal Picrorhiza kurroa Royle ex Benth: implications for conservation

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Picrorhiza kurroa is a medicinally important, high altitude perennial herb, endemic to the Himalayas. It possesses strong hepato-protective bioactivity that is contributed by two iridoid picroside compounds viz Picroside-I (P-I) and Picroside-II (P-II). Commercially, many P. kurroa based hepato-stimulatory Ayurvedic drug brands that use different proportions of P-I and P-II are available in the market. To identify genetically heterozygous and high yielding genotypes for multiplication, sustained use and conservation, it is essential to assess genetic and phytochemical diversity and understand the population structure of P. kurroa. In the present study, isolation and HPLC based quantification of picrosides P-I and P-II and molecular DNA fingerprinting using RAPD, AFLP and ISSR markers have been undertaken in 124 and 91 genotypes, respectively. The analyzed samples were collected from 10 natural P. kurroa Himalayan populations spread across four states (Jammu & Kashmir, Sikkim, Uttarakhand and Himachal Pradesh) of India. Genotypes used in this study covered around 1000 km geographical area of the total Indian Himalayan habitat range of P. kurroa. Significant quantitative variation ranging from 0.01 per cent to 4.15% for P-I, and from 0.01% to 3.18% in P-II picroside was observed in the analyzed samples. Three molecular DNA markers, RAPD (22 primers), ISSR (15 primers) and AFLP (07 primer combinations) also revealed a high level of genetic variation. The percentage polymorphism and effective number of alleles for RAPD, ISSR and AFLP analysis varied from 83.5%, 80.6% and 72.1%; 1.5722, 1.5787 and 1.5665, respectively. Further, the rate of gene flow (Nm) between populations was moderate for RAPD (0.8434), and AFLP (0.9882) and comparatively higher for ISSR (1.6093). Fst values were observed to be 0.56, 0.33, and 0.51 for RAPD, ISSR and AFLP markers, respectively. These values suggest that most of the observed genetic variation resided within populations. Neighbour joining (NJ), principal coordinate analysis (PCoA) and Bayesian based STRUCTURE grouped all the analyzed accessions into largely region-wise clusters and showed some inter-mixing between the populations, indicating the existence of distinct gene pools with limited gene flow/exchange. The present study has revealed a high level of genetic diversity in the analyzed populations. The analysis has resulted in identification of genetically diverse and high picrosides containing P. kurroa genotypes from Sainj, Dayara, Tungnath, Furkia, Parsuthach, Arampatri, Manvarsar, Kedarnath, Thangu and Temza in the Indian Himalayan region. The inferences generated in this study can be used to devise future resource management and conservation strategies in P. kurroa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data materials

Available on request.

References

  • Akbar S (2020) Picrorhiza kurroa Royle ex Benth. (Plantaginaceae). In: Handbook of 200 medicinal plants: a comprehensive review of their traditional medical uses and scientific justifications. Springer, Cham. https://doi.org/10.1007/978-3-030-16807-0_145

  • Barik SK, Rao BR, Haridasan K, Adhikari D, Singh PP, Tiwary R (2018) Classifying threatened species of India using IUCN criteria. Curr Sci 114:588–595

    Google Scholar 

  • Barrett SCH, Kohn JK (1991) Genetic and evolutionary consequences of small population size in plants: implications for conservation. In: Falk DA, Holsinger KH (eds) Genetics and conservation of rare plants. Center for plant conservation. Oxford University Press, Oxford, pp 3–30

    Google Scholar 

  • Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I (2003) Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor Appl Genet 107:736–744

    CAS  PubMed  Google Scholar 

  • Bhat WW, Dhar N, Razdan S, Rana S, Mehra R, Nargotra A et al (2013) Molecular characterization of UGT94F2 and UGT86C4, two Glycosyltransferases from Picrorhiza kurrooa: comparative structural insight and evaluation of substrate recognition. PLoS ONE 8(9):e73804. https://doi.org/10.1371/journal.pone.0073804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee S, Bhattacharya S, Jana S, Baghel DS (2013) A review on medicinally important species of Picrorhiza. IJPRBS 2(4):1–16

    Google Scholar 

  • Carvalho YGS, Vitorino LC, de Souza UJB, Bessa LA (2019) Recent trends in research on the genetic diversity of plants: implications for conservation. Diversity. https://doi.org/10.3390/d11040062

    Article  Google Scholar 

  • Chesnokov Y, Artem’eva A (2015) Evaluation of the measure of polymorphism. Agric Biol 50(5):571–578

    Google Scholar 

  • Costa R, Pereira G, Garrido I, Tavares-de-Sousa MM, Espinosa F (2016) Comparison of RAPD, ISSR, and AFLP molecular markers to reveal and classify Orchardgrass (Dactylis glomerata L.) germplasm variations. PLoS ONE 11(4):e0152972. https://doi.org/10.1371/journal.pone.0152972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Masi L, Siviero P, Esposito C, Castaldo D, Siano F, Laratta B (2006) Assessment of agronomic, chemical and genetic variability in common basil (Ocimum basilicum L.). Eur Food Res Technol 223(2):273. https://doi.org/10.1007/s00217-005-0201-0

    Article  CAS  Google Scholar 

  • Debnath P, Rathore S, Walia S, Kumar M, Devi R, Kumar R (2020) Picrorhiza kurroa: a promising traditional therapeutic herb from higher altitude of western Himalayas. J Herb Med 23:100358. https://doi.org/10.1016/j.hermed.2020.100358

    Article  Google Scholar 

  • Degani C, Rowland LJ, Saunders AJA, Hokanson SC, Ogden EL, Golan-Goldhirsh A, Galletta GJ (2001) A comparison of genetic relationship measures in strawberry (Fragaria x ananassa Duch.) based on AFLPs, RAPDs, and pedigree data. Euphytica 117:1–12

    CAS  Google Scholar 

  • Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.1: An integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hadian J, Ebrahimi SN, Mirjalili MH, Azizi A, Ranjbar H, Friedt W (2011) Chemical and genetic diversity of Zataria multiflora Boiss. accessions growing wild in Iran. Chem Biodiver 8:176–188

    CAS  Google Scholar 

  • Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer, Sunderland, pp 43–63

    Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond B Biol Sci 351:1291–1298

    Google Scholar 

  • Han T, Hu Y, Zhou SY et al (2008) Correlation between the genetic diversity and variation of total phenolic acids contents in Fructus xanthii from different populations in China. Biomed Chromatogr 22:478–486

    CAS  PubMed  Google Scholar 

  • Katoch M, Hussain MA, Ahuja A (2013) Comparison of SSR and cytochrome P-450 markers for estimating genetic diversity in Picrorhiza kurrooa L. Plant Syst Evol 299:1637–1643

    CAS  Google Scholar 

  • Katoch M, Fazli IS, Suri KA et al (2011) Effect of altitude on picroside content in core collections of Picrorhiza kurrooa from the north western Himalayas. J Nat Med 65:578–582. https://doi.org/10.1007/s11418-010-0491-9

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy A (1969) The Wealth of India, vol VIII. Publication and Information Directorate, CSIR, New Delhi, p 49

    Google Scholar 

  • Kumar A, Rajpal VR, Raina R, Choudhary M, Raina SN (2014) Nuclear DNA assay of the wild endangered medicinal and aromatic Indian Himalayan Valeriana jatamansi germplasm with multiple DNA markers: implications for genetic enhancement, domestication and ex situ conservation. Plant Syst Evol 300(9):2061–2071

    CAS  Google Scholar 

  • Kumar J, Verma V, Goyal A, Shahi AK, Saproo R, Sangwan RS, Qazi GN (2009) Genetic diversity analysis in Cymbopogon species using DNA markers. Plant Omics 2(1):20

    CAS  Google Scholar 

  • Kumar N, Sharma SK (2014) A new aromatic ester from Picrorhiza kurroa Royle ex Benth. J Pharmacogn Phytochem 3(1):96–98

    CAS  Google Scholar 

  • Kumar V (2019) OMICS‐Based approaches for elucidation of picrosides biosynthesis in Picrorhiza Kurroa. https://doi.org/10.1002/9781119509967.ch8

  • Kumar V, Bansal A, Chauhan RS (2017) Modular design of picroside-II biosynthesis deciphered through NGS transcriptomes and metabolic intermediates analysis in naturally variant chemotypes of a medicinal herb, Picrorhiza kurroa. Front Plant Sci 8:564. https://doi.org/10.3389/fpls.2017.00564

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Sharma N, Sood H et al (2016) Exogenous feeding of immediate precursors reveals synergistic effect on picroside-I biosynthesis in shoot cultures of Picrorhiza kurroa Royle ex Benth. Sci Rep 6:29750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lannér-Herrera C, Gustafsson M, Fält AS, Bryngelsson T (1996) Diversity in natural populations of wild Brassica oleracea as estimated by Isozyme and RAPD analysis. Genet Resour Crop Evol 43:13–23

    Google Scholar 

  • Lone SA, Qazi PH, Gupta S (2018) Genetic diversity of Epimedium elatum (Morren & Decne) revealed by RAPD characterization. Curr Bot 9:41–46

    Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    CAS  PubMed  Google Scholar 

  • Mahajan R, Kapoor N, Singh I (2016) Somatic embryogenesis and callus proliferation in Picrorhiza kurroa Royle ex. Benth J Exp Biol Agric Sci 4(2):201–209

    CAS  Google Scholar 

  • Mandal S, Mukhopadhyay S (2004) New iridoid glucoside from Picrorhiza kurroa Royle ex Benth. Indian J Chem Sect B Org Chem Incl Med Chem 43(5):1023–1025

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Can Res 27:209–220

    CAS  Google Scholar 

  • Masood M, Arshad M, Qureshi R, Sabir S, Amjad MS, Qureshi H, Tahir Z (2015) Picrorhiza kurroa: An ethnopharmacologically important plant species of Himalayan region. Pure Appl Biol 4(3):407–417

    CAS  Google Scholar 

  • Mehra TS, Raina R, Rana RC, Chandra P, Pandey PK (2017) Elite chemo-types of a critically endangered medicinal plant Picrorhiza kurroa Royle ex Benth from Indian Western Himalaya. J Pharmacogn Phytochem 6(5):1679–1682

    CAS  Google Scholar 

  • Naik PK, Alam MA, Singh H, Goyal V, Parida S, Kalia S, Mohapatra T (2010) Assessment of genetic diversity through RAPD, ISSR and AFLP markers in Podophyllum hexandrum: a medicinal herb from the Northwestern Himalayan region. Physiol Mol Biol Plants 16(2):135–148. https://doi.org/10.1007/s12298-010-0015-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Nayar MP, Sastry ARK (1990) Red data plants of India. CSIR Publication, New Delhi, p 271

    Google Scholar 

  • Nazarzadeh Z, Onsori H, Akrami S (2020) Genetic diversity of bread wheat (Triticum aestivum L.) genotypes using RAPD and ISSR molecular markers. J Genet Resour 6(1):69–76

    Google Scholar 

  • Pejic I, Ajmone-Marsan P, Morgante M, Kozumplik V, Castiglioni P, Taramino G, Motto M (1998) Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor Appl Genet 97:1248–1255

    CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    CAS  Google Scholar 

  • Prentice HC, Malm JU, Mateu-Andres I, Segarra-Moragues JG (2003) Allozyme and chloroplast DNA variation in island and mainland populations of the rare Spanish endemic, Silene hifacensis (Caryophyllaceae). Conserv Genet 4:543–555

    CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rohlf FJ (1998) NTSYS-pc: numerical taxonomy and multivariate analysis system version 2.02K. Applied Biostatistics, New York

  • Russell JR, Fuller JB, MaCaulay M, Hatz BG, Jhoor A, Powel W, Waugh R (1997) Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95:1161–1168

    Google Scholar 

  • Sales E, Sergio GN, Mus M, Segura J (2001) Population genetic study in the Balearic endemic plant species Digitalis minor (Scrophulariaceae) using RAPD markers. Am J Bot 88(10):1750–1759

    CAS  PubMed  Google Scholar 

  • Sarwat M, Das S, Srivastava PS (2008) Analysis of genetic diversity through AFLP, SAMPL, ISSR and RAPD markers in Tribulus terrestris, a medicinal herb. Plant Cell Rep 27:519–528

    CAS  PubMed  Google Scholar 

  • Shitiz K, Pandit S, Chanumolu S, Sood H, Singh H, Singh J, Chauhan R (2017) Mining simple sequence repeats in Picrorhiza kurroa transcriptomes for assessing genetic diversity among accessions varying for picrosides contents. Plant Genet Resour 15(1):79–88

    CAS  Google Scholar 

  • Shitiz K, Sharma N, Pal T, Sood H, Chauhan RS (2015) NGS Transcriptomes and enzyme inhibitors unravel complexity of picrosides biosynthesis in Picrorhiza kurroa Royle ex. Benth PLoSONE 10(12):e0144546

    Google Scholar 

  • Singh P, Nag A, Parmar R, Ghosh S, Bhau BS, Sharma RK (2015) Genetic diversity and population structure of endangered Aquilaria malaccensis revealed potential for future conservation. J Genet 94:697–704

    PubMed  Google Scholar 

  • Singh P, Sharma RK (2020) Development of informative genic SSR markers for genetic diversity analysis of Picrorhiza kurroa. J Plant Biochem Biotechnol 29:144–148

    CAS  Google Scholar 

  • Smith JF, Pham TV (1996) Genetic diversity of the narrow endemic Allium aaseae (Alliaceae). Am J Bot 83:717–726

    Google Scholar 

  • Song BH, Varshney VK, Mittal N, Ginwal HS (2015) High levels of diversity in the phytochemistry, ploidy and genetics of the medicinal plant Acorus calamus L. Med Aromat Plants S 1:002. https://doi.org/10.4172/2167-0412.S1-002

    Article  Google Scholar 

  • Soni D, Grover A (2019) “Picrosides” from Picrorhiza kurroa as potential anti-carcinogenic agents. Biomed Pharmacother 109:1680–1687. https://doi.org/10.1016/j.biopha.2018.11.048

    Article  CAS  PubMed  Google Scholar 

  • Sultan P, Jan A, Pervaiz Q (2016) Phytochemical studies for quantitative estimation of iridoid glycosides in Picrorhiza kurroa Royle. Bot Stud 57:7. https://doi.org/10.1186/s40529-016-0121-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sultan P, Shawl AS, Ramtekeb PW, Koura A, Qazia PH (2008) Assessment of diversity in Podophyllum hexandrum by genetic and phytochemical markers. Sci Hortic 115:398–408

    CAS  Google Scholar 

  • Thakur RK, Rajpal VR, Raina SN, Kumar P, Sonkar A, Joshi L (2020) UPLC-DAD assisted phytochemical quantitation reveals a sex, ploidy and ecogeography specificity in the expression levels of selected secondary metabolites in medicinal Tinospora cordifolia: implications for elites’ identification program. Curr Top Med Chem 20:698. https://doi.org/10.2174/1568026620666200124105027

    Article  CAS  PubMed  Google Scholar 

  • Thani PR, Sharma YP, Kandel P (2018) Phytochemical studies on Indian market samples of drug “Kutki” (Picrorhiza kurroa Royle ex Benth). Re J Agr Forest Sci 6(2):1–5

    Google Scholar 

  • Thapliyal S, Mahadevan N, Nanjan MJ (2012) Analysis of Picroside I and Kutkoside in Picrorhiza kurroa and its Formulation by HPTLC. Int J Res Pharm Biomed Sci 3(1):25–30

    Google Scholar 

  • Thein SI, Wallace RR (1986) The use of synthetic oligonucleotides as specific hybridization probes in the diagnosis of genetic disorders. In: Davis KE (ed) Human genetic disease: a practical approach. IRL, Oxford, pp 33–50

    Google Scholar 

  • Thiyagarajan M, Venkatachalam P (2015) Assessment of genetic and biochemical diversity of Stevia rebaudiana Bertoni by DNA fingerprinting and HPLC analysis. Ann Phytomed 4(1):79–85

    CAS  Google Scholar 

  • Tiwari SS, Pandey MM, Srivastava S, Rawat A (2012) KTLC densitometric quantification of picrosides (picroside-I and picroside-II) in Picrorhiza kurroa and its substitute Picrorhiza scrophulariiflora and their antioxidant studies. Biomed Chromatogr 26:61–68

    CAS  PubMed  Google Scholar 

  • Torres E, Iriondo JM, Pérez C (2003) Genetic structure of an endangered plant, Antirrhinum microphyllum (Scrophulariaceae): Allozyme and RAPD analysis. Am J Bot 90:85–92

    CAS  PubMed  Google Scholar 

  • Trindade H, Costa MM, Sofia BLA, Pedro LG, Figueiredo AC, Barroso JG (2008) Genetic diversity and chemical polymorphism of Thymus caespititius from Pico, Sao Jorge and Terceira islands (Azores). Biochem Syst Ecol 36(10):790–797

    CAS  Google Scholar 

  • Vaidya AB, Antarkar DS, Doshi JC, Bhatt AD, Ramesh V, Vora PV, Perissond D, Baxi AJ, Kale PMJ (1996) Picrorhiza kurroa (Kutki) Royle ex Benth as a hepatoprotective agent experimental and clinical studies. J Postgrad Med 42:105–108

    CAS  PubMed  Google Scholar 

  • Yeh FC, Boyle T, Yeh Z, Xiyan JM (1999) POPGENE Version 1.31: Microsoft Window based freeware for population genetic analysis. University of Alberta and center for International Forestry Research, Edmonton.

Download references

Acknowledgements

This work was supported by grant for scientific research from the Department of Biotechnology, Government of India. Avinash Kumar acknowledges SRF from CSIR during his Ph.D. The authors are thankful to Prof. (Retd.) Ravinder Raina, Department of Forest Products, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India, for easing collection of germplasm from Himachal. The authors extend their sincere gratitude to anonymous reviewers for their constructive comments that helped in the improvement of the manuscript.

Funding

This work was supported by grant for scientific research from the Department of Biotechnology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

Contributors Role Taxonomy (CRediT): Avinash Kumar: Sample Collection, Methodology, Investigation (molecular profiling), Validation, Formal analysis, Writing—Original Draft preparation. Ambika: Methodology, Investigation (Chemical profiling), Formal analysis, Validation, (chemoprofiling). Amita Kumari: Analysis. Rachhaya.Mallikarjun Devarumath: Sample Collection. Rakesh Thakur: Analysis. Manju Chaudhary: Analysis. Pradeep Pratap Singh: Analysis (Chemical profiling). Shiv Murat Singh Chauhan: Conceptualization, Supervision (Chemical profiling work). SN Raina: Conceptualization, Resources, Overall Supervision, Project administration, Funding acquisition. Vijay Rani Rajpal: Supervision, Visualization, Validation, Writing and editing.

Corresponding author

Correspondence to Vijay Rani Rajpal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

All authors have given their consent for publication in the journal “Physiology and Molecular Biology of Plants”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 621 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Rajpal, V.R., Ambika et al. Isolation and HPLC assisted quantification of two iridoid glycoside compounds and molecular DNA fingerprinting in critically endangered medicinal Picrorhiza kurroa Royle ex Benth: implications for conservation. Physiol Mol Biol Plants 27, 727–746 (2021). https://doi.org/10.1007/s12298-021-00972-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-021-00972-w

Keywords

Navigation