Skip to main content
Log in

Molecular characterization and expression analysis of iron superoxide dismutase gene from Pseudochlorella pringsheimii (Trebouxiophyceae, Chlorophyta)

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The FeSOD isoforms of Pseudochlorella pringsheimii were identified, a preliminary characterization of the enzyme was conducted, and the relationship among the FeSOD gene from P. pringsheimii and that of other organisms was examined. The FeSOD has an open reading frame of 612 bp that encodes 203 deduced amino acids with a molecular mass of 23 kDa. Expression of the recombinant FeSOD gene was done successfully in Escherichia coli. The purified FeSOD has a specific enzyme activity that reached 688 U mg−1 protein (in vitro assay). Alkaline conditions showed the highest activity for the recombinant FeSOD. Moreover, it showed a relative thermostability up to 50 °C, while at 50 and 70 °C, the activity was reduced by 32 and 68%, respectively, after 1 h as compared to the maximum. Phylogenetic analysis revealed three main clusters i.e., the prokaryotic Cyanophyta, bacteria, and the eukaryotic Chlorophyta intermingled with plant species and a dinoflagellate. P. pringsheimii was closely grouped with Chlorella pyrenoidosa, however, other species showed a relative disparity. Alignment of FeSOD gene sequences of the different species showed many conserved regions which could be used for FeSOD sequences among unexplored species and may be useful for the taxonomy of the revised coccoid Chlorella species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almansa MS, Palma JM, Yáñez J, Del Río LA, Sevilla F (1991) Purification of an iron-containing superoxide dismutase from a citrus plant, Citrus limonum R. Free Radic Res Commun 12:319–328

    Article  PubMed  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Armbrust E, Berges J, Bowler C, Green B, Martinez D, Putnam N, Zhou S, Allen A, Apt K, Bechner M, Brzezinski M, Chaal B, Chiovitti A, Davis A, Goodstein D, Hadi M, Hellsten U, Hildebrand M, Jenkins B, Jurka J, Kapitonov V, Kroger N, Lau W, Lane T, Larimer F, Lippmeier J, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour G, Richardson P, Rynearson T, Saito M, Schwartz D, Thamatrakoln K, Valentin K, Vardi A, Wilkerson F, Rokhsar D (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  • Asada K, Yoshikawa K, Takahashi M, Maeda Y, Enmani K (1975) Superoxide dismutases from blue-green alga, Plectonema boryanum. J Biol Chem 250:2801–2807

    CAS  PubMed  Google Scholar 

  • Asada K, Kanematsu S, Okada S, Hayakawa T (1980) Phylogenic distribution of three types of superoxide dismutase in organisms and in cell organelles. In: Bannister JV, Hill HAO (eds) Chemical and biochemical aspects of superoxide and superoxide dismutase. Elsevier, Amsterdam, pp 136–153

    Google Scholar 

  • Bafana A, Dutt S, Kumar A, Kumar S, Ahuja PS (2011) The basic and applied aspects of superoxide dismutase. J Mol Catal B Enzym 68:129–138

    Article  CAS  Google Scholar 

  • Bannister JV, Bannister WH, Rotilio G (1987) Aspects of the structure, function and applications of superoxide dismutase. CRC Crit Rev Biochem 22:111–180

    Article  CAS  PubMed  Google Scholar 

  • Bannister WH, Bannister JV, Barra D, Bond J, Bossa F (1991) Evolutionary aspects of superoxide dismutase: the copper/zinc enzyme. Free Radic Res Commun 12–13:349–361

    Article  Google Scholar 

  • Baytut Ö, Gürkanli CT, Gönülol A, Özkoç I (2014) Molecular phylogeny of Chlorella-related chlorophytes (Chlorophyta) from Anatolian freshwaters of Turkey. Turk J Bot 38:600–607

    Article  Google Scholar 

  • Bischoff HW, Bold HC (1963) Phycological studies. IV. Some soil algae from enchanted rock and related algal species. University of Texas Publication No. 6318, pp 32–36

  • Bowler C, Van Montagu M, Inzé D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Biol 43:83–116

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bridges SM, Salin ML (1981) Distribution of iron-containing superoxide dismutase in vascular plants. Plant Physiol 68:275–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bueno P, Varela J, Gimenez-Gallego G, del Rio LA (1995) Peroxisomal copper, zinc superoxide dismutase (characterization of the isoenzyme from watermelon cotyledons). Plant Physiol 108:1151–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campana F, Zervoudis S, Perdereau B, Gez E, Fourquet A, Badiu C, Tsakiris G, Koulaloglou S (2004) Topical superoxide dismutase reduces post-irradiation breast cancer fibrosis. J Cell Mol Med 8:109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darienko T, Gustavs L, Mudimu O, Menendez CR, Schumann R, Karsten U, Friedl T, Pröschold T (2010) Chloroidium, a common terrestrial coccoid green alga previously assigned to Chlorella (Trebouxiophyceae, Chlorophyta). Eur J Phycol 45:79–95

    Article  CAS  Google Scholar 

  • Doering M, Piercey-Normore MD (2009) Genetically divergent algae an epiphytic lichen community on Jack Pine in Manitoba. The Lichenologist 41:69–80

    Article  Google Scholar 

  • Dos Santos WG, Pacheco I, Liu MY, Teixeira M, Xavier AV, LeGall J (2000) Purification and characterization of an iron superoxide dismutase and a catalase from the sulfate-reducing bacterium Desulfovibrio gigas. J Bacteriol 182:769–804

    Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  CAS  PubMed  Google Scholar 

  • Görs M, Schumann R, Gustavs L, Karsten U (2010) The potential of ergosterol as chemotaxonomic marker to differentiate between “Chlorella” species (Chlorophyta). J Phycol 46:1296–1300

    Article  Google Scholar 

  • Grace SC (1990) Phylogenetic distribution of superoxide dismutase supports an endosymbiotic origin for chloroplasts and mitochondria. Life Sci 47:1875–1886

    Article  CAS  PubMed  Google Scholar 

  • He N, Li Q, Sun D, Ling X (2008) Isolation, purification and characterization of superoxide dismutase from garlic. Biochem Eng J 38:33–38

    Article  CAS  Google Scholar 

  • Heeg JS, Wolf M (2015) ITS2 and 18S rDNA sequence-structure phylogeny of Chlorella and allies (Chlorophyta, Trebouxiophyceae, Chlorellaceae). Plant Gene 4:20–28

    Article  CAS  Google Scholar 

  • Hirooka S, Higuchi S, Uzuka A, Nozaki H, Miyagishima SY (2014) Acidophilic green alga Pseudochlorella sp. YKT1 accumulates high amount of lipid droplets under a nitrogen-depleted condition at a low-pH. PLoS ONE 9:e107702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismaiel MMS, El-Ayouty YM, Loewen PC, Piercey-Normore MD (2014) Characterization of the iron-containing superoxide dismutase and its response to stress in cyanobacterium Spirulina (Arthrospira) platensis. J Appl Phycol 26:1649–1658

    Article  CAS  Google Scholar 

  • Kaminaka H, Morita S, Tokumoto M, Yokoyama H, Masumura T, Tanaka K (1999) Molecular cloning and characterization of a cDNA for an iron-superoxide dismutase in rice (Oryza sativa L.). Biosci Biotechnol Biochem 63:302–308

    Article  CAS  PubMed  Google Scholar 

  • Kanematsu S, Asada K (1990) Characteristic amino acid sequences of chloroplast and cytosol isozymes of Cu–Zn superoxide dismutase in spinach, rice and horsetail. Plant Cell Physiol 31:99–112

    CAS  Google Scholar 

  • Kessler E (1976) Comparative physiology, biochemistry, and the taxonomy of Chlorella (Chlorophyceae). Plant Syst Evol 125:129–138

    Article  Google Scholar 

  • Kim EJ, Kim HP, Hah YC, Roe JH (1996) Differential expression of superoxide dismutases containing Ni and Fe/Zn in Streptomyces coelicolor. Eur J Biochem 241:178–185

    Article  CAS  PubMed  Google Scholar 

  • Kitayama K, Kitayama M, Osafune T, Togasaki RK (1999) Subcellular localization of iron and manganese superoxide dismutase in Chlamydomonas reinhardtii (Chlorophyceae). J Phycol 35:136–142

    Article  CAS  Google Scholar 

  • Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118:637–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Li T, Huang X, Zhou R, Liu Y, Li B, Nomura C, Zhao J (2002) Differential expression and localization of Mn and Fe superoxide dismutases in the heterocystous cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 184:5096–5103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin AU, Lin MT, Chen YT, Shaw JF (1995) Subunit interaction enhances enzyme activity and stability of sweet potato Cu/Zn-superoxide dismutase purified by His-tagged recombinant protein method. Plant Mol Biol 28:303–311

    Article  CAS  PubMed  Google Scholar 

  • Mallick N (2004) Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: response of the antioxidant system. J Plant Physiol 161:591–597

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima S-Y, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    Article  CAS  PubMed  Google Scholar 

  • Miller AF (2012) Superoxide dismutases: ancient enzymes and new insights. FEBS Lett 586:585–595

    Article  CAS  PubMed  Google Scholar 

  • Miszalski Z, Ślesak I, Niewiadomska E, Baczek-Kwinta R, Lüttge U, Ratajczak R (1998) Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L. Plant Cell Environ 21:169–179

    Article  CAS  Google Scholar 

  • Pokora W, Reszka J, Tukaj Z (2003) Activities of superoxide dismutase (SOD) isoforms during growth of Scenedesmus (Chlorophyta) species and strains grown in batch-cultures. Acta Physiol Plant 25:375–384

    Article  CAS  Google Scholar 

  • Puget K, Michelson AM (1974) Iron containing superoxide dismutases from luminous bacteria. Biochimie 56:1255–1267

    Article  CAS  PubMed  Google Scholar 

  • Rubio MC, Ramos J, Webb KJ, Minchin FR, González E, Arrese-Igor C, Becana M (2001) Expression studies of superoxide dismutases in nodules and leaves of transgenic alfalfa reveal abundance of iron-containing isozymes, posttranslational regulation, and compensation of isozyme activities. Mol Plant Microbe Interact 14:1178–1188

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto A, Nosaka Y, Tanaka K (1993) Cloning and sequencing analysis of a complementary DNA for manganese-superoxide dismutase from rice (Oryza sativa L.). Plant Physiol 103:1477–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai H, Kusumoto N, Kitayama K, Togasaki RK (1993) Isozymes of superoxide dismutase in Chlamydomonas one of the major isozymes containing Fe. Plant Cell Physiol 34:1133–1137

    CAS  Google Scholar 

  • Salin ML, Bridges SM (1982) Isolation and characterization of an iron-containing superoxide dismutase from water lily, Nuphar luteum. Plant Physiol 69:161–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sandalio LM, del Río LA (1987) Localization of superoxide dismutase in glyoxysomes from Citrullus vulgaris. Functional implications in cellular metabolism. J Plant Physiol 127:395–409

    Article  CAS  Google Scholar 

  • Sarsour EH, Goswami M, Kalen AL, Goswami PC (2010) MnSOD activity protects mitochondrial morphology of quiescent fibroblasts from age associated abnormalities. Mitochondrion 10:342–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shihira I, Krauss RW (1965) Chlorella: physiology and taxonomy of forty one isolates. University of Maryland, College Park, pp 1–97

    Google Scholar 

  • Shirkey B, Kovarcik DP, Wright DJ, Wilmoth G, Prickett TF, Helm RF, Gregory EM, Potts M (2000) Active Fe containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (Cyanobacteria) after years of desiccation. J Bacteriol 182:89–197

    Article  Google Scholar 

  • Stallings WC, Pattridge KA, Strong RK, Ludwig ML (1984) Manganese and iron superoxide dismutases are structural homologs. J Biol Chem 259:10695–10699

    CAS  PubMed  Google Scholar 

  • Steinman H (1982) Superoxide dismutases: protein chemistry and structure–function relationships. In: Oberley LW (ed) Superoxide dismutase. CRC Press, Boca Raton, pp 11–68

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Camp W, Bowler C, Villarroel R, Tsang EW, Van Montagu M, Inzé D (1990) Characterization of iron superoxide dismutase cDNAs from plants obtained by genetic complementation in Escherichia coli. Proc Natl Acad Sci 87:9903–9907

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Yang H, Ruan L, Liu X, Li F, Xu X (2008) Cloning and characterization of a thermostable superoxide dismutase from the thermophilic bacterium Rhodothermus sp. XMH10. J Ind Microbiol Biotechnol 35:133–139

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Sommerfeld M, Qiang H (2011) Cloning and expression of isoenzymes of superoxide dismutase in Haematococcus pluvialis (Chlorophyceae) under oxidative stress. J Appl Phycol 23:995–1003

    Article  CAS  Google Scholar 

  • Wolfe-Simon F, Grzebyk D, Schofield O, Falkowski PG (2005) The role and evolution of superoxide dismutases in algae. J Phycol 41:453–465

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. G. Hausner and M.H. Abdelfattah (University of Manitoba, MB, Canada), for technical assistance. The first author would like to thank the Ministry of Higher Education and Scientific Research (MHESR, Egypt) for the financial support (through a post doctoral fellowship). This work was financially assisted by a Natural Sciences and Engineering Research Council (NSERC) grant (to Dr. Piercey-Normore).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa M. S. Ismaiel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismaiel, M.M.S., Piercey-Normore, M.D. Molecular characterization and expression analysis of iron superoxide dismutase gene from Pseudochlorella pringsheimii (Trebouxiophyceae, Chlorophyta). Physiol Mol Biol Plants 25, 221–228 (2019). https://doi.org/10.1007/s12298-018-0569-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-018-0569-5

Keywords

Navigation