Skip to main content
Log in

Hesperidin Supplementation Improves Altered PON -1, LDL Oxidation, Inflammatory Response and Hepatic Function in an Experimental Rat Model of Hyperlipidemia

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

In this study, we have examined the effect of hesperidin on rats fed on an experimental high-fat diet. Male Wistar rats were given a high-fat diet orally for one month for developing an HFD (High fat- diet) model. Rats were also supplemented with hesperidin (100 mg/kg body weight) for one month. We determined serum LDL (Low-density lipoprotein) oxidation, Paraoxonase-1 (PON-1) activity, and histopathological profile of the liver. Inflammatory cytokines levels were also measured in serum. HFD induced significant changes in LDL oxidation and PON-1 activity. Liver tissue histopathology and gene expression of inflammatory markers (Il-6(Interleukin-6), TNF- alpha (Tumor necrosis factor alpha), NF-KB (Nuclear factor kappa B) show that significant changes occur in the hyperlipidemic model of rats. We also show that hesperidin can effectively improve plasma antioxidant, LDL oxidation, and inflammatory cytokine expression in rats already subjected to hyperlipidemic stress. We conclude that hesperidin may protect the liver from oxidative stress by improving hepatic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The information that helps the finding of this study is accessible from the corresponding author upon reasonable request.

References

  1. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Saturated fat, carbohydrate, and cardiovascular disease. Am J Clin Nutr. 2010;91:502–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wali JA, Jarzebska N, Raubenheimer D, Simpson SJ, Rodionov RN, O’Sullivan JF. Cardio-metabolic effects of high-fat diets and their underlying mechanisms-a narrative review. Nutrients. 2020;12:1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alves-Bezerra M, Cohen DE. Triglyceride metabolism in the liver. Compr Physiol. 2017;8:1–8.

    PubMed  PubMed Central  Google Scholar 

  4. Levitan I, Volkov S, Subbaiah PV. Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal. 2010;13:39–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jump DB, Tripathy S, Depner CM. Fatty acid-regulated transcription factors in the liver. Annu Rev Nutr. 2013;33:249–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications–a review. Nutr J. 2014;13:17.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122:4–22.

    Article  CAS  PubMed  Google Scholar 

  8. Tan BL, Norhaizan ME. Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function. Nutrients. 2019;11:2579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Safitri N, Alaina MF, Pitaloka DAE, Abdulah R. A narrative review of statin-induced rhabdomyolysis: molecular mechanism, risk factors, and management. Drug Healthc Patient Saf. 2021;13:211–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shaito A, Thuan DTB, Phu HT, Nguyen THD, Hasan H, Halabi S, et al. Herbal medicine for cardiovascular diseases: efficacy, mechanisms, and safety. Front Pharmacol. 2020;11:422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines. 2018;5:93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kumar R, Rizvi SI. Vitamin C improves inflammatory-related redox status in hyperlipidemic rats. Ind J Clin Biochem. 2022. https://doi.org/10.1007/s12291-022-01070-8.

    Article  Google Scholar 

  13. Cheng Y-C, Sheen J-M, Hu WL, Hung Y-C. Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxid Med Cell Longev. 2017;2017:8526438.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pyrzynska K. Hesperidin: a review on extraction methods, stability and biological activities. Nutrients. 2022;14:2387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sengupta P. The laboratory rat: relating its age with human’s. Int J Prev Med. 2013;4:624–30.

    PubMed  PubMed Central  Google Scholar 

  16. Kumar R, Akhtar F, Rizvi SI. Hesperidin attenuates altered redox homeostasis in an experimental hyperlipidaemic model of rat. Clin Exp Pharmacol Physiol. 2020;47:571–82.

    Article  CAS  PubMed  Google Scholar 

  17. Becker JB, Prendergast BJ, Liang JW. Female rats are not more variable than male rats: a meta-analysis of neuroscience studies. Biol Sex Differ. 2016;7:34.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–75.

    Article  CAS  PubMed  Google Scholar 

  19. Schnitzer E, Pinchuk I, Bor A, Fainaru M, Samuni AM, Lichtenberg D. Lipid oxidation in unfractionated serum and plasma. Chem Phys Lipids. 1998;92:151–70.

    Article  CAS  PubMed  Google Scholar 

  20. Ayub A, Mackness MI, Arrol S, Mackness B, Patel J, Durrington PN. Serum paraoxonase after myocardial infarction. Arterioscler Thromb Vasc Biol. 1999;19:330–5.

    Article  CAS  PubMed  Google Scholar 

  21. Mehdi MM, Rizvi SI. Human plasma paraoxonase 1 (PON1) arylesterase activity during aging: correlation with susceptibility of LDL oxidation. Arch Med Res. 2012;43:438–43.

    Article  CAS  PubMed  Google Scholar 

  22. Ellulu MS, Patimah I, Khazaai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;13:851–63.

    Article  CAS  PubMed  Google Scholar 

  23. Mohammadi M, Ramezani-Jolfaie N, Lorzadeh E, Khoshbakht Y, Salehi-Abargouei A. Hesperidin, a major flavonoid in orange juice, might not affect lipid profile and blood pressure: a systematic review and meta-analysis of randomized controlled clinical trials. Phytother Res. 2019;33:534–45.

    Article  CAS  PubMed  Google Scholar 

  24. Demonty I, Lin Y, Zebregs YEMP, Vermeer MA, van der Knaap HCM, Jäkel M, et al. The citrus flavonoids hesperidin and naringin do not affect serum cholesterol in moderately hypercholesterolemic men and women. J Nutr. 2010;140:1615–20.

    Article  CAS  PubMed  Google Scholar 

  25. Tabeshpour J, Hosseinzadeh H, Hashemzaei M, Karimi G. A review of the hepatoprotective effects of hesperidin, a flavanon glycoside in citrus fruits, against natural and chemical toxicities. Daru. 2020;28:305–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morris G, Walker AJ, Walder K, Berk M, Marx W, Carvalho AF, et al. Increasing Nrf2 activity as a treatment approach in neuropsychiatry. Mol Neurobiol. 2021;58:2158–82.

    Article  CAS  PubMed  Google Scholar 

  27. Aja PM, Ekpono EU, Awoke JN, Famurewa AC, Izekwe FI, Okoro EJ, et al. Hesperidin ameliorates hepatic dysfunction and dyslipidemia in male Wistar rats exposed to cadmium chloride. Toxicol Rep. 2020;7:1331–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jung UJ, Lee M-K, Park YB, Kang MA, Choi M-S. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int J Biochem Cell Biol. 2006;38:1134–45.

    Article  CAS  PubMed  Google Scholar 

  29. Grande F, Occhiuzzi MA, Perri MR, Ioele G, Rizzuti B, Statti G, et al. Polyphenols from citrus Tacle® extract endowed with HMGCR inhibitory activity: an antihypercholesterolemia natural remedy. Molecules. 2021;26:5718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cakatay U, Kayali R, Uzun H. Relation of plasma protein oxidation parameters and paraoxonase activity in the ageing population. Clin Exp Med. 2008;8:51–7.

    Article  CAS  PubMed  Google Scholar 

  31. Roy PK, Islam J, Lalhlenmawia H. Prospects of potential adipokines as therapeutic agents in obesity-linked atherogenic dyslipidemia and insulin resistance. Egypt Heart J. 2023;75:24.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vergeer M, Holleboom AG, Kastelein JJP, Kuivenhoven JA. The HDL hypothesis: does high-density lipoprotein protect from atherosclerosis? J Lipid Res. 2010;51:2058–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paz-Filho G, Mastronardi C, Wong M-L, Licinio J. Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian J Endocrinol Metab. 2012;16:S549-555.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jürimäe T, Sudi K, Jürimäe J, Payerl D, Rüütel K. Relationships between plasma leptin levels and body composition parameters measured by different methods in postmenopausal women: leptin level and body composition in women. Am J Hum Biol. 2003;15:628–36.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Ibrahim Rizvi.

Ethics declarations

Conflict of interest

The authors of this manuscript have no conflict of interest.

Ethical Approval

All animal care and exploratory methods conformed with the guidelines of the Control and Supervision of Experiments on Animals (CPCSEA) and Institutional Animal Ethics Committee (IAEC), University of Allahabad, India.

Informed Consent

No human experimentation was undertaken hence informed consent is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Khan, M.I., Ashfaq, F. et al. Hesperidin Supplementation Improves Altered PON -1, LDL Oxidation, Inflammatory Response and Hepatic Function in an Experimental Rat Model of Hyperlipidemia. Ind J Clin Biochem 39, 257–263 (2024). https://doi.org/10.1007/s12291-023-01140-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-023-01140-5

Keywords

Navigation