Skip to main content

Advertisement

Log in

Increasing Nrf2 Activity as a Treatment Approach in Neuropsychiatry

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor encoded by NFE2L2. Under oxidative stress, Nrf2 does not undergo its normal cytoplasmic degradation but instead travels to the nucleus, where it binds to a DNA promoter and initiates transcription of anti-oxidative genes. Nrf2 upregulation is associated with increased cellular levels of glutathione disulfide, glutathione peroxidase, glutathione transferases, thioredoxin and thioredoxin reductase. Given its key role in governing the cellular antioxidant response, upregulation of Nrf2 has been suggested as a common therapeutic target in neuropsychiatric illnesses such as major depressive disorder, bipolar disorder and schizophrenia, which are associated with chronic oxidative and nitrosative stress, characterised by elevated levels of reactive oxygen species, nitric oxide and peroxynitrite. These processes lead to extensive lipid peroxidation, protein oxidation and carbonylation, and oxidative damage to nuclear and mitochondrial DNA. Intake of N-acetylcysteine, coenzyme Q10 and melatonin is accompanied by increased Nrf2 activity. N-acetylcysteine intake is associated with improved cerebral mitochondrial function, decreased central oxidative and nitrosative stress, reduced neuroinflammation, alleviation of endoplasmic reticular stress and suppression of the unfolded protein response. Coenzyme Q10, which acts as a superoxide scavenger in neuroglial mitochondria, instigates mitohormesis, ameliorates lipid peroxidation in the inner mitochondrial membrane, activates uncoupling proteins, promotes mitochondrial biogenesis and has positive effects on the plasma membrane redox system. Melatonin, which scavenges mitochondrial free radicals, inhibits mitochondrial nitric oxide synthase, restores mitochondrial calcium homeostasis, deacetylates and activates mitochondrial SIRT3, ameliorates increased permeability of the blood-brain barrier and intestine and counters neuroinflammation and glutamate excitotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Allen J, Romay-Tallon R, Brymer KJ, Caruncho HJ, Kalynchuk LE (2018) Mitochondria and mood: mitochondrial dysfunction as a key player in the manifestation of depression. Front Neurosci 12:386–386. https://doi.org/10.3389/fnins.2018.00386

    Article  PubMed  PubMed Central  Google Scholar 

  2. Morris G, Walder K, McGee SL, Dean OM, Tye SJ, Maes M, Berk M (2017) A model of the mitochondrial basis of bipolar disorder. Neurosci Biobehav Rev 74(Pt A):1–20. https://doi.org/10.1016/j.neubiorev.2017.01.014

    Article  CAS  PubMed  Google Scholar 

  3. Rajasekaran A, Venkatasubramanian G, Berk M, Debnath M (2015) Mitochondrial dysfunction in schizophrenia: pathways, mechanisms and implications. Neurosci Biobehav Rev 48:10–21. https://doi.org/10.1016/j.neubiorev.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  4. Abdallah CG, Jiang L, De Feyter HM, Fasula M, Krystal JH, Rothman DL, Mason GF, Sanacora G (2014) Glutamate metabolism in major depressive disorder. Am J Psychiatry 171(12):1320–1327. https://doi.org/10.1176/appi.ajp.2014.14010067

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zuccoli GS, Saia-Cereda VM, Nascimento JM, Martins-de-Souza D (2017) The energy metabolism dysfunction in psychiatric disorders postmortem brains: focus on proteomic evidence. Front Neurosci 11:493. https://doi.org/10.3389/fnins.2017.00493

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yoshimi N, Futamura T, Bergen SE, Iwayama Y, Ishima T, Sellgren C, Ekman CJ, Jakobsson J et al (2016) Cerebrospinal fluid metabolomics identifies a key role of isocitrate dehydrogenase in bipolar disorder: evidence in support of mitochondrial dysfunction hypothesis. Mol Psychiatry 21(11):1504–1510. https://doi.org/10.1038/mp.2015.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim Y, Santos R, Gage FH, Marchetto MC (2017) Molecular mechanisms of bipolar disorder: progress made and future challenges. Front Cell Neurosci 11:30. https://doi.org/10.3389/fncel.2017.00030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scaini G, Rezin GT, Carvalho AF, Streck EL, Berk M, Quevedo J (2016) Mitochondrial dysfunction in bipolar disorder: evidence, pathophysiology and translational implications. Neurosci Biobehav Rev 68:694–713. https://doi.org/10.1016/j.neubiorev.2016.06.040

    Article  CAS  PubMed  Google Scholar 

  9. Gassen NC, Rein T (2019) Is there a role of autophagy in depression and antidepressant action? Front Psychiatry 10:337. https://doi.org/10.3389/fpsyt.2019.00337

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bansal Y, Kuhad A (2016) Mitochondrial dysfunction in depression. Curr Neuropharmacol 14(6):610–618. https://doi.org/10.2174/1570159X14666160229114755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Flippo KH, Strack S (2017) An emerging role for mitochondrial dynamics in schizophrenia. Schizophr Res 187:26–32. https://doi.org/10.1016/j.schres.2017.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  12. Roberts RC (2017) Postmortem studies on mitochondria in schizophrenia. Schizophr Res 187:17–25. https://doi.org/10.1016/j.schres.2017.01.056

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moylan S, Berk M, Dean OM, Samuni Y, Williams LJ, O’Neil A, Hayley AC, Pasco JA et al (2014) Oxidative & nitrosative stress in depression: why so much stress? Neurosci Biobehav Rev 45:46–62. https://doi.org/10.1016/j.neubiorev.2014.05.007

    Article  CAS  PubMed  Google Scholar 

  14. Maes M, Landucci Bonifacio K, Morelli NR, Vargas HO, Barbosa DS, Carvalho AF, Nunes SOV (2019) Major differences in neurooxidative and neuronitrosative stress pathways between major depressive disorder and types I and II bipolar disorder. Mol Neurobiol 56(1):141–156. https://doi.org/10.1007/s12035-018-1051-7

    Article  CAS  PubMed  Google Scholar 

  15. Anderson G, Maes M (2015) Bipolar disorder: role of immune-inflammatory cytokines, oxidative and nitrosative stress and tryptophan catabolites. Curr Psychiatry Rep 17(2):8. https://doi.org/10.1007/s11920-014-0541-1

    Article  PubMed  Google Scholar 

  16. Boll KM, Noto C, Bonifacio KL, Bortolasci CC, Gadelha A, Bressan RA, Barbosa DS, Maes M et al (2017) Oxidative and nitrosative stress biomarkers in chronic schizophrenia. Psychiatry Res 253:43–48. https://doi.org/10.1016/j.psychres.2017.03.038

    Article  CAS  PubMed  Google Scholar 

  17. Nasyrova RF, Ivashchenko DV, Ivanov MV, Neznanov NG (2015) Role of nitric oxide and related molecules in schizophrenia pathogenesis: biochemical, genetic and clinical aspects. Front Physiol 6:139. https://doi.org/10.3389/fphys.2015.00139

    Article  PubMed  PubMed Central  Google Scholar 

  18. Owe-Larsson B, Ekdahl K, Edbom T, Osby U, Karlsson H, Lundberg C, Lundberg M (2011) Increased plasma levels of thioredoxin-1 in patients with first episode psychosis and long-term schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 35(4):1117–1121. https://doi.org/10.1016/j.pnpbp.2011.03.012

    Article  CAS  Google Scholar 

  19. Zhang XY, Chen DC, Xiu MH, Wang F, Qi LY, Sun HQ, Chen S, He SC et al (2009) The novel oxidative stress marker thioredoxin is increased in first-episode schizophrenic patients. Schizophr Res 113(2):151–157. https://doi.org/10.1016/j.schres.2009.05.016

    Article  PubMed  Google Scholar 

  20. Aydin EP, Genc A, Dalkiran M, Uyar ET, Deniz I, Ozer OA, Karamustafalioglu KO (2018) Thioredoxin is not a marker for treatment-resistance depression but associated with cognitive function: an rTMS study. Prog Neuro-Psychopharmacol Biol Psychiatry 80(Pt C):322–328. https://doi.org/10.1016/j.pnpbp.2017.04.025

    Article  CAS  Google Scholar 

  21. Bas A, Gultekin G, Incir S, Bas TO, Emul M, Duran A (2017) Level of serum thioredoxin and correlation with neurocognitive functions in patients with schizophrenia using clozapine and other atypical antipsychotics. Psychiatry Res 247:84–89. https://doi.org/10.1016/j.psychres.2016.11.021

    Article  CAS  PubMed  Google Scholar 

  22. Genc K, Genc S (2009) Oxidative stress and dysregulated Nrf2 activation in the pathogenesis of schizophrenia. Biosci Hypotheses 2(1):16–18. https://doi.org/10.1016/j.bihy.2008.10.005

    Article  Google Scholar 

  23. Genc A, Kalelioglu T, Karamustafalioglu N, Tasdemir A, Gungor FC, Genc ES, Incir S, Ilnem C et al (2015) Level of plasma thioredoxin in male patients with manic episode at initial and post-electroconvulsive or antipsychotic treatment. Psychiatry Clin Neurosci 69(6):344–350. https://doi.org/10.1111/pcn.12244

    Article  CAS  PubMed  Google Scholar 

  24. Nucifora LG, Tanaka T, Hayes LN, Kim M, Lee BJ, Matsuda T, Nucifora FC Jr, Sedlak T et al (2017) Reduction of plasma glutathione in psychosis associated with schizophrenia and bipolar disorder in translational psychiatry. Transl Psychiatry 7(8):e1215. https://doi.org/10.1038/tp.2017.178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Freed RD, Hollenhorst CN, Weiduschat N, Mao X, Kang G, Shungu DC, Gabbay V (2017) A pilot study of cortical glutathione in youth with depression. Psychiatry Res Neuroimaging 270:54–60. https://doi.org/10.1016/j.pscychresns.2017.10.001

    Article  PubMed  Google Scholar 

  26. Lapidus KAB, Gabbay V, Mao X, Johnson A, Murrough JW, Mathew SJ, Shungu DC (2014) In vivo 1H MRS study of potential associations between glutathione, oxidative stress and anhedonia in major depressive disorder. Neurosci Lett 569:74–79. https://doi.org/10.1016/j.neulet.2014.03.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gawryluk JW, Wang J-F, Andreazza AC, Shao L, Young LT (2011) Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 14(1):123–130. https://doi.org/10.1017/s1461145710000805

    Article  CAS  PubMed  Google Scholar 

  28. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2011) Lower whole blood glutathione peroxidase (GPX) activity in depression, but not in myalgic encephalomyelitis / chronic fatigue syndrome: another pathway that may be associated with coronary artery disease and neuroprogression in depression. Neuro Endocrinol Lett 32(2):133–140

    PubMed  Google Scholar 

  29. Yao JK, Reddy RD, van Kammen DP (1999) Human plasma glutathione peroxidase and symptom severity in schizophrenia. Biol Psychiatry 45(11):1512–1515. https://doi.org/10.1016/s0006-3223(98)00184-x

    Article  CAS  PubMed  Google Scholar 

  30. Martin-Hernandez D, Caso JR, Javier Meana J, Callado LF, Madrigal JLM, Garcia-Bueno B, Leza JC (2018) Intracellular inflammatory and antioxidant pathways in postmortem frontal cortex of subjects with major depression: effect of antidepressants. J Neuroinflammation 15(1):251. https://doi.org/10.1186/s12974-018-1294-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang JC, Yao W, Dong C, Han M, Shirayama Y, Hashimoto K (2018) Keap1-Nrf2 signaling pathway confers resilience versus susceptibility to inescapable electric stress. Eur Arch Psychiatry Clin Neurosci 268(8):865–870. https://doi.org/10.1007/s00406-017-0848-0

    Article  PubMed  Google Scholar 

  32. Pei L, Wallace DC (2018) Mitochondrial etiology of neuropsychiatric disorders. Biol Psychiatry 83(9):722–730. https://doi.org/10.1016/j.biopsych.2017.11.018

    Article  CAS  PubMed  Google Scholar 

  33. Morris G, Berk M (2015) The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BMC Med 13(1):68. https://doi.org/10.1186/s12916-015-0310-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Steckert AV, Valvassori SS, Moretti M, Dal-Pizzol F, Quevedo J (2010) Role of oxidative stress in the pathophysiology of bipolar disorder. Neurochem Res 35(9):1295–1301. https://doi.org/10.1007/s11064-010-0195-2

    Article  CAS  PubMed  Google Scholar 

  35. Bošković M, Vovk T, Kores Plesničar B, Grabnar I (2011) Oxidative stress in schizophrenia. Curr Neuropharmacol 9(2):301–312. https://doi.org/10.2174/157015911795596595

    Article  PubMed  PubMed Central  Google Scholar 

  36. Drechsel DA, Patel M (2010) Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system. J Biol Chem 285(36):27850–27858. https://doi.org/10.1074/jbc.M110.101196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lopert P, Day BJ, Patel M (2012) Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells. PLoS One 7(11):e50683. https://doi.org/10.1371/journal.pone.0050683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lopert P, Patel M (2014) Nicotinamide nucleotide transhydrogenase (Nnt) links the substrate requirement in brain mitochondria for hydrogen peroxide removal to the thioredoxin/peroxiredoxin (Trx/Prx) system. J Biol Chem 289(22):15611–15620. https://doi.org/10.1074/jbc.M113.533653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kudin AP, Augustynek B, Lehmann AK, Kovács R, Kunz WS (2012) The contribution of thioredoxin-2 reductase and glutathione peroxidase to H2O2 detoxification of rat brain mitochondria. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1817(10):1901–1906. https://doi.org/10.1016/j.bbabio.2012.02.023

    Article  CAS  Google Scholar 

  40. Treberg JR, Braun K, Selseleh P (2019) Mitochondria can act as energy-sensing regulators of hydrogen peroxide availability. Redox Biol 20:483–488. https://doi.org/10.1016/j.redox.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  41. Fang J, Holmgren A (2006) Inhibition of thioredoxin and thioredoxin reductase by 4-hydroxy-2-nonenal in vitro and in vivo. J Am Chem Soc 128(6):1879–1885. https://doi.org/10.1021/ja057358l

    Article  CAS  PubMed  Google Scholar 

  42. Morris G, Berk M, Klein H, Walder K, Galecki P, Maes M (2017) Nitrosative stress, hypernitrosylation, and autoimmune responses to Nitrosylated proteins: new pathways in neuroprogressive disorders including depression and chronic fatigue syndrome. Mol Neurobiol 54(6):4271–4291. https://doi.org/10.1007/s12035-016-9975-2

    Article  CAS  PubMed  Google Scholar 

  43. Stein LR, Imai S-i (2012) The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol Metab 23(9):420–428. https://doi.org/10.1016/j.tem.2012.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hopp A-K, Grüter P, Hottiger MO (2019) Regulation of glucose metabolism by NAD+ and ADP-ribosylation. Cells 8(8):890. https://doi.org/10.3390/cells8080890

    Article  CAS  PubMed Central  Google Scholar 

  45. Wu YT, Wu SB, Lee WY, Wei YH (2010) Mitochondrial respiratory dysfunction-elicited oxidative stress and posttranslational protein modification in mitochondrial diseases. Ann N Y Acad Sci 1201:147–156. https://doi.org/10.1111/j.1749-6632.2010.05631.x

    Article  CAS  PubMed  Google Scholar 

  46. Wang CH, Wu SB, Wu YT, Wei YH (2013) Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging. Exp Biol Med (Maywood, NJ) 238(5):450–460. https://doi.org/10.1177/1535370213493069

    Article  CAS  Google Scholar 

  47. Ashrafi G, Schlehe JS, LaVoie MJ, Schwarz TL (2014) Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol 206(5):655–670. https://doi.org/10.1083/jcb.201401070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kubli DA, Gustafsson ÅB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111(9):1208–1221. https://doi.org/10.1161/CIRCRESAHA.112.265819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vasconcelos AR, dos Santos NB, Scavone C, Munhoz CD (2019) Nrf2/ARE pathway modulation by dietary energy regulation in neurological disorders. Front Pharmacol 10:33. https://doi.org/10.3389/fphar.2019.00033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. David JA, Rifkin WJ, Rabbani PS, Ceradini DJ (2017) The Nrf2/Keap1/ARE pathway and oxidative stress as a therapeutic target in type II diabetes mellitus. J Diabetes Res 2017:4826724. https://doi.org/10.1155/2017/4826724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cuadrado A, Manda G, Hassan A, Alcaraz MJ, Barbas C, Daiber A, Ghezzi P, León R et al (2018) Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach. Pharmacol Rev 70(2):348–383. https://doi.org/10.1124/pr.117.014753

    Article  CAS  PubMed  Google Scholar 

  52. Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, Tornatore C, Sweetser MT et al (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 367(12):1098–1107. https://doi.org/10.1056/NEJMoa1114287

    Article  CAS  PubMed  Google Scholar 

  53. Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, Yang M, Raghupathi K et al (2012) Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 367(12):1087–1097. https://doi.org/10.1056/NEJMoa1206328

    Article  CAS  PubMed  Google Scholar 

  54. Linker RA, Lee DH, Ryan S, van Dam AM, Conrad R, Bista P, Zeng W, Hronowsky X et al (2011) Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain J Neurol 134(Pt 3):678–692. https://doi.org/10.1093/brain/awq386

    Article  Google Scholar 

  55. da Costa RM, Rodrigues D, Pereira CA, Silva JF, Alves JV, Lobato NS, Tostes RC (2019) Nrf2 as a potential mediator of cardiovascular risk in metabolic diseases. Front Pharmacol 10:382–382. https://doi.org/10.3389/fphar.2019.00382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Axelsson AS, Tubbs E, Mecham B, Chacko S, Nenonen HA, Tang Y, Fahey JW, Derry JMJ et al (2017) Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Sci Transl Med 9(394):eaah4477. https://doi.org/10.1126/scitranslmed.aah4477

    Article  CAS  PubMed  Google Scholar 

  57. Patel B, Mann GE, Chapple SJ (2018) Concerted redox modulation by sulforaphane alleviates diabetes and cardiometabolic syndrome. Free Radic Biol Med 122:150–160. https://doi.org/10.1016/j.freeradbiomed.2018.02.004

    Article  CAS  PubMed  Google Scholar 

  58. Ji L, Liu R, Zhang XD, Chen HL, Bai H, Wang X, Zhao HL, Liang X et al (2010) N-acetylcysteine attenuates phosgene-induced acute lung injury via up-regulation of Nrf2 expression. Inhal Toxicol 22(7):535–542. https://doi.org/10.3109/08958370903525183

    Article  CAS  PubMed  Google Scholar 

  59. Zhang L, Zhu Z, Liu J, Zhu Z, Hu Z (2014) Protective effect of N-acetylcysteine (NAC) on renal ischemia/reperfusion injury through Nrf2 signaling pathway. J Receptors Signal Transduction 34(5):396–400. https://doi.org/10.3109/10799893.2014.908916

    Article  CAS  Google Scholar 

  60. Wang LL, Huang YH, Yan CY, Wei XD, Hou JQ, Pu JX, Lv JX (2016) N-acetylcysteine ameliorates prostatitis via miR-141 regulating Keap1/Nrf2 signaling. Inflammation 39(2):938–947. https://doi.org/10.1007/s10753-016-0327-1

    Article  CAS  PubMed  Google Scholar 

  61. Morris G, Anderson G, Berk M, Maes M (2013) Coenzyme Q10 depletion in medical and neuropsychiatric disorders: potential repercussions and therapeutic implications. Mol Neurobiol 48(3):883–903. https://doi.org/10.1007/s12035-013-8477-8

    Article  CAS  PubMed  Google Scholar 

  62. Ooi SL, Green R, Pak SC (2018) N-acetylcysteine for the treatment of psychiatric disorders: a review of current evidence. Biomed Res Int 2018:8. https://doi.org/10.1155/2018/2469486

    Article  CAS  Google Scholar 

  63. Luo C, Yang Q, Liu Y, Zhou S, Jiang J, Reiter RJ, Bhattacharya P, Cui Y et al (2019) The multiple protective roles and molecular mechanisms of melatonin and its precursor N-acetylserotonin in targeting brain injury and liver damage and in maintaining bone health. Free Radic Biol Med 130:215–233. https://doi.org/10.1016/j.freeradbiomed.2018.10.402

    Article  CAS  PubMed  Google Scholar 

  64. Kim R, Healey KL, Sepulveda-Orengo MT, Reissner KJ (2018) Astroglial correlates of neuropsychiatric disease: from astrocytopathy to astrogliosis. Prog Neuro-Psychopharmacol Biol Psychiatry 87(Pt A):126–146. https://doi.org/10.1016/j.pnpbp.2017.10.002

    Article  Google Scholar 

  65. Tay TL, Béchade C, D'Andrea I, St-Pierre M-K, Henry MS, Roumier A, Tremblay M-E (2018) Microglia gone rogue: impacts on psychiatric disorders across the lifespan. Front Mol Neurosci 10:421–421. https://doi.org/10.3389/fnmol.2017.00421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Radtke FA, Chapman G, Hall J, Syed YA (2017) Modulating neuroinflammation to treat neuropsychiatric disorders. Biomed Res Int 2017:21. https://doi.org/10.1155/2017/5071786

    Article  CAS  Google Scholar 

  67. O'Donovan SM, Sullivan CR, McCullumsmith RE (2017) The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ Schizophr 3(1):32–32. https://doi.org/10.1038/s41537-017-0037-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64(2):238–258. https://doi.org/10.1124/pr.111.005108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Muneer A, Shamsher Khan RM (2019) Endoplasmic reticulum stress: implications for neuropsychiatric disorders. Chonnam Med J 55(1):8–19. https://doi.org/10.4068/cmj.2019.55.1.8

    Article  PubMed  PubMed Central  Google Scholar 

  70. Dewachter I, Ris L, Jaworski T, Seymour CM, Kremer A, Borghgraef P, De Vijver H, Godaux E et al (2009) GSK3beta, a centre-staged kinase in neuropsychiatric disorders, modulates long term memory by inhibitory phosphorylation at serine-9. Neurobiol Dis 35(2):193–200. https://doi.org/10.1016/j.nbd.2009.04.003

    Article  CAS  PubMed  Google Scholar 

  71. Kuehner JN, Bruggeman EC, Wen Z, Yao B (2019) Epigenetic regulations in neuropsychiatric disorders. Front Genet 10:268. https://doi.org/10.3389/fgene.2019.00268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jagannath A, Peirson SN, Foster RG (2013) Sleep and circadian rhythm disruption in neuropsychiatric illness. Curr Opin Neurobiol 23(5):888–894. https://doi.org/10.1016/j.conb.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  73. Dey S, Sidor A, O'Rourke B (2016) Compartment-specific control of reactive oxygen species scavenging by antioxidant pathway enzymes. J Biol Chem 291(21):11185–11197. https://doi.org/10.1074/jbc.M116.726968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Munro D, Treberg JR (2017) A radical shift in perspective: mitochondria as regulators of reactive oxygen species. J Exp Biol 220(7):1170–1180. https://doi.org/10.1242/jeb.132142

    Article  PubMed  Google Scholar 

  75. Starkov AA, Andreyev AY, Zhang SF, Starkova NN, Korneeva M, Syromyatnikov M, Popov VN (2014) Scavenging of H2O2 by mouse brain mitochondria. J Bioenerg Biomembr 46(6):471–477. https://doi.org/10.1007/s10863-014-9581-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ronchi JA, Francisco A, Passos LA, Figueira TR, Castilho RF (2016) The contribution of nicotinamide nucleotide transhydrogenase to peroxide detoxification is dependent on the respiratory state and counterbalanced by other sources of NADPH in liver mitochondria. J Biol Chem 291(38):20173–20187. https://doi.org/10.1074/jbc.M116.730473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Montano SJ, Lu J, Gustafsson TN, Holmgren A (2014) Activity assays of mammalian thioredoxin and thioredoxin reductase: fluorescent disulfide substrates, mechanisms, and use with tissue samples. Anal Biochem 449:139–146. https://doi.org/10.1016/j.ab.2013.12.025

    Article  CAS  PubMed  Google Scholar 

  78. Cheng Q, Antholine WE, Myers JM, Kalyanaraman B, Arner ES, Myers CR (2010) The selenium-independent inherent pro-oxidant NADPH oxidase activity of mammalian thioredoxin reductase and its selenium-dependent direct peroxidase activities. J Biol Chem 285(28):21708–21723. https://doi.org/10.1074/jbc.M110.117259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Berkholz DS, Faber HR, Savvides SN, Karplus PA (2008) Catalytic cycle of human glutathione reductase near 1 A resolution. J Mol Biol 382(2):371–384. https://doi.org/10.1016/j.jmb.2008.06.083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kamerbeek NM, van Zwieten R, de Boer M, Morren G, Vuil H, Bannink N, Lincke C, Dolman KM et al (2007) Molecular basis of glutathione reductase deficiency in human blood cells. Blood 109(8):3560–3566. https://doi.org/10.1182/blood-2006-08-042531

    Article  CAS  PubMed  Google Scholar 

  81. Santos LRB, Muller C, de Souza AH, Takahashi HK, Spegel P, Sweet IR, Chae H, Mulder H et al (2017) NNT reverse mode of operation mediates glucose control of mitochondrial NADPH and glutathione redox state in mouse pancreatic beta-cells. Mol Metab 6(6):535–547. https://doi.org/10.1016/j.molmet.2017.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rydstrom J (2006) Mitochondrial NADPH, transhydrogenase and disease. Biochim Biophys Acta 1757(5–6):721–726. https://doi.org/10.1016/j.bbabio.2006.03.010

    Article  CAS  PubMed  Google Scholar 

  83. Murphy MP (2015) Redox modulation by reversal of the mitochondrial nicotinamide nucleotide transhydrogenase. Cell Metab 22(3):363–365. https://doi.org/10.1016/j.cmet.2015.08.012

    Article  CAS  PubMed  Google Scholar 

  84. Ronchi JA, Figueira TR, Ravagnani FG, Oliveira HC, Vercesi AE, Castilho RF (2013) A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities. Free Radic Biol Med 63:446–456. https://doi.org/10.1016/j.freeradbiomed.2013.05.049

    Article  CAS  PubMed  Google Scholar 

  85. Petrelli R, Felczak K, Cappellacci L (2011) NMN/NaMN adenylyltransferase (NMNAT) and NAD kinase (NADK) inhibitors: chemistry and potential therapeutic applications. Curr Med Chem 18(13):1973–1992

    Article  CAS  PubMed  Google Scholar 

  86. Love NR, Pollak N, Dölle C, Niere M, Chen Y, Oliveri P, Amaya E, Patel S et al (2015) NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms. Proc Natl Acad Sci 112(5):1386–1391. https://doi.org/10.1073/pnas.1417290112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shi F, Li Y, Li Y, Wang X (2009) Molecular properties, functions, and potential applications of NAD kinases. Acta Biochim Biophys Sin 41(5):352–361. https://doi.org/10.1093/abbs/gmp029

    Article  CAS  PubMed  Google Scholar 

  88. Pittelli M, Formentini L, Faraco G, Lapucci A, Rapizzi E, Cialdai F, Romano G, Moneti G et al (2010) Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool. J Biol Chem 285(44):34106–34114. https://doi.org/10.1074/jbc.M110.136739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jayaram HN, Kusumanchi P, Yalowitz JA (2011) NMNAT expression and its relation to NAD metabolism. Curr Med Chem 18(13):1962–1972. https://doi.org/10.2174/092986711795590138

    Article  CAS  PubMed  Google Scholar 

  90. Revollo JR, Grimm AA, Imai S-i (2004) The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 279(49):50754–50763. https://doi.org/10.1074/jbc.M408388200

    Article  CAS  PubMed  Google Scholar 

  91. Canto C, Menzies KJ, Auwerx J (2015) NAD+ metabolism and the control of energy homeostasis - a balancing act between mitochondria and the nucleus. Cell Metab 22(1):31–53. https://doi.org/10.1016/j.cmet.2015.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zeng C, Aleshin AE, Hardie JB, Harrison RW, Fromm HJ (1996) ATP-binding site of human brain hexokinase as studied by molecular modeling and site-directed mutagenesis. Biochemistry 35(40):13157–13164. https://doi.org/10.1021/bi960750e

    Article  CAS  PubMed  Google Scholar 

  93. Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206(12):2049–2057. https://doi.org/10.1242/jeb.00241

    Article  CAS  PubMed  Google Scholar 

  94. Roberts DJ, Miyamoto S (2015) Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ 22(2):248–257. https://doi.org/10.1038/cdd.2014.173

    Article  CAS  PubMed  Google Scholar 

  95. Cruz-Tapias P, Agmon-Levin N, Israeli E, Anaya JM, Shoenfeld Y (2013) Autoimmune (auto-inflammatory) syndrome induced by adjuvants (ASIA)--animal models as a proof of concept. Curr Med Chem 20(32):4030–4036

    Article  CAS  PubMed  Google Scholar 

  96. Garcia-Nogales P, Almeida A, Bolanos JP (2003) Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection. J Biol Chem 278(2):864–874. https://doi.org/10.1074/jbc.M206835200

    Article  CAS  PubMed  Google Scholar 

  97. Bayir H, Kagan VE, Clark RS, Janesko-Feldman K, Rafikov R, Huang Z, Zhang X, Vagni V et al (2007) Neuronal NOS-mediated nitration and inactivation of manganese superoxide dismutase in brain after experimental and human brain injury. J Neurochem 101(1):168–181. https://doi.org/10.1111/j.1471-4159.2006.04353.x

    Article  CAS  PubMed  Google Scholar 

  98. Isobe C, Abe T, Terayama Y (2009) Increase in the oxidized/total coenzyme Q-10 ratio in the cerebrospinal fluid of Alzheimer’s disease patients. Dement Geriatr Cogn Disord 28(5):434–439. https://doi.org/10.1159/000256209

    Article  CAS  Google Scholar 

  99. Gomez-Diaz C, Rodriguez-Aguilera JC, Barroso MP, Villalba JM, Navarro F, Crane FL, Navas P (1997) Antioxidant ascorbate is stabilized by NADH-coenzyme Q10 reductase in the plasma membrane. J Bioenerg Biomembr 29(3):251–257

    Article  CAS  PubMed  Google Scholar 

  100. Bello RI, Kagan VE, Tyurin V, Navarro F, Alcain FJ, Villalba JM (2003) Regeneration of lipophilic antioxidants by NAD(P)H:quinone oxidoreductase 1. Protoplasma 221(1–2):129–135. https://doi.org/10.1007/s00709-002-0068-x

    Article  CAS  PubMed  Google Scholar 

  101. Liu Q, Gao Y, Ci X (2019) Role of Nrf2 and its activators in respiratory diseases. Oxidative Med Cell Longev 2019:17. https://doi.org/10.1155/2019/7090534

    Article  CAS  Google Scholar 

  102. Morris G, Berk M, Carvalho AF, Maes M, Walker AJ, Puri BK (2018) Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav Brain Res 341:154–175. https://doi.org/10.1016/j.bbr.2017.12.036

    Article  CAS  PubMed  Google Scholar 

  103. Cebula M, Schmidt EE, Arner ES (2015) TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid Redox Signal 23(10):823–853. https://doi.org/10.1089/ars.2015.6378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schmidt EE (2015) Interplay between cytosolic disulfide reductase systems and the Nrf2/Keap1 pathway. Biochem Soc Trans 43(4):632–638. https://doi.org/10.1042/BST20150021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hansen JM, Watson WH, Jones DP (2004) Compartmentation of Nrf-2 redox control: regulation of cytoplasmic activation by glutathione and DNA binding by thioredoxin-1. Toxicol Sci : an official journal of the Society of Toxicology 82(1):308–317. https://doi.org/10.1093/toxsci/kfh231

    Article  CAS  Google Scholar 

  106. Sueblinvong V, Mills ST, Neujahr DC, Go Y-M, Jones DP, Guidot DM (2016) Nuclear thioredoxin-1 overexpression attenuates alcohol-mediated Nrf2 signaling and lung fibrosis. Alcohol Clin Exp Res 40(9):1846–1856. https://doi.org/10.1111/acer.13148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Steele ML, Fuller S, Patel M, Kersaitis C, Ooi L, Munch G (2013) Effect of Nrf2 activators on release of glutathione, cysteinylglycine and homocysteine by human U373 astroglial cells. Redox Biol 1:441–445. https://doi.org/10.1016/j.redox.2013.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ishii T, Mann GE (2014) Redox status in mammalian cells and stem cells during culture in vitro: critical roles of Nrf2 and cystine transporter activity in the maintenance of redox balance. Redox Biol 2:786–794. https://doi.org/10.1016/j.redox.2014.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Banning A, Deubel S, Kluth D, Zhou Z, Brigelius-Flohe R (2005) The GI-GPx gene is a target for Nrf2. Mol Cell Biol 25(12):4914–4923. https://doi.org/10.1128/mcb.25.12.4914-4923.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jablonska E, Gromadzinska J, Peplonska B, Fendler W, Reszka E, Krol MB, Wieczorek E, Bukowska A et al (2015) Lipid peroxidation and glutathione peroxidase activity relationship in breast cancer depends on functional polymorphism of GPX1. BMC Cancer 15:657. https://doi.org/10.1186/s12885-015-1680-4

    Article  PubMed  PubMed Central  Google Scholar 

  111. Bartolini D, Commodi J, Piroddi M, Incipini L, Sancineto L, Santi C, Galli F (2015) Glutathione S-transferase pi expression regulates the Nrf2-dependent response to hormetic diselenides. Free Radic Biol Med 88:466–480. https://doi.org/10.1016/j.freeradbiomed.2015.06.039

    Article  CAS  PubMed  Google Scholar 

  112. Harvey CJ, Thimmulappa RK, Singh A, Blake DJ, Ling G, Wakabayashi N, Fujii J, Myers A et al (2009) Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic Biol Med 46(4):443–453. https://doi.org/10.1016/j.freeradbiomed.2008.10.040

    Article  CAS  PubMed  Google Scholar 

  113. Tanito M, Agbaga MP, Anderson RE (2007) Upregulation of thioredoxin system via Nrf2-antioxidant responsive element pathway in adaptive-retinal neuroprotection in vivo and in vitro. Free Radic Biol Med 42(12):1838–1850. https://doi.org/10.1016/j.freeradbiomed.2007.03.018

    Article  CAS  PubMed  Google Scholar 

  114. Im J-Y, Lee K-W, Woo J-M, Junn E, Mouradian MM (2012) DJ-1 induces thioredoxin 1 expression through the Nrf2 pathway. Hum Mol Genet 21(13):3013–3024. https://doi.org/10.1093/hmg/dds131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li Q, Wall SB, Ren C, Velten M, Hill CL, Locy ML, Rogers LK, Tipple TE (2016) Thioredoxin reductase inhibition attenuates neonatal hyperoxic lung injury and enhances nuclear factor E2-related factor 2 activation. Am J Respir Cell Mol Biol 55(3):419–428. https://doi.org/10.1165/rcmb.2015-0228OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Holmström KM, Kostov RV, Dinkova-Kostova AT (2016) The multifaceted role of Nrf2 in mitochondrial function. Curr Opin Toxicol 1:80–91. https://doi.org/10.1016/j.cotox.2016.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  117. Dinkova-Kostova AT, Abramov AY (2015) The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med 88(Pt B):179–188. https://doi.org/10.1016/j.freeradbiomed.2015.04.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ushida Y, Talalay P (2013) Sulforaphane accelerates acetaldehyde metabolism by inducing aldehyde dehydrogenases: relevance to ethanol intolerance. Alcohol Alcohol 48(5):526–534. https://doi.org/10.1093/alcalc/agt063

    Article  CAS  PubMed  Google Scholar 

  119. Heiss EH, Schachner D, Zimmermann K, Dirsch VM (2013) Glucose availability is a decisive factor for Nrf2-mediated gene expression. Redox Biol 1(1):359–365. https://doi.org/10.1016/j.redox.2013.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Roubalová L, Dinkova-Kostova AT, Biedermann D, Křen V, Ulrichová J, Vrba J (2017) Flavonolignan 2,3-dehydrosilydianin activates Nrf2 and upregulates NAD(P)H:quinone oxidoreductase 1 in Hepa1c1c7 cells. Fitoterapia 119:115–120. https://doi.org/10.1016/j.fitote.2017.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yamaguchi Y, Hearing VJ, Maeda A, Morita A (2010) NADPH:quinone oxidoreductase-1 as a new regulatory enzyme that increases melanin synthesis. J Investig Dermatol 130(3):645–647. https://doi.org/10.1038/jid.2009.378

    Article  CAS  PubMed  Google Scholar 

  122. Dinkova-Kostova AT, Kostov RV, Kazantsev AG (2018) The role of Nrf2 signaling in counteracting neurodegenerative diseases. FEBS J 285(19):3576–3590. https://doi.org/10.1111/febs.14379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8(1):e1000298. https://doi.org/10.1371/journal.pbio.1000298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang T, Wu P, Budbazar E, Zhu Q, Sun C, Mo J, Peng J, Gospodarev V et al (2019) Mitophagy reduces oxidative stress via Keap1 (Kelch-like epichlorohydrin-associated protein 1)/Nrf2 (nuclear factor-E2-related factor 2)/PHB2 (prohibitin 2) pathway after subarachnoid hemorrhage in rats. Stroke 50(4):978–988. https://doi.org/10.1161/strokeaha.118.021590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Palikaras K, Lionaki E, Tavernarakis N (2015) Balancing mitochondrial biogenesis and mitophagy to maintain energy metabolism homeostasis. Cell Death Differ 22(9):1399–1401. https://doi.org/10.1038/cdd.2015.86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ploumi C, Daskalaki I, Tavernarakis N (2017) Mitochondrial biogenesis and clearance: a balancing act. FEBS J 284(2):183–195. https://doi.org/10.1111/febs.13820

    Article  CAS  PubMed  Google Scholar 

  127. O'Mealey GB, Plafker KS, Berry WL, Janknecht R, Chan JY, Plafker SM (2017) A PGAM5-KEAP1-Nrf2 complex is required for stress-induced mitochondrial retrograde trafficking. J Cell Sci 130(20):3467–3480. https://doi.org/10.1242/jcs.203216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pala R, Orhan C, Tuzcu M, Sahin N, Ali S, Cinar V, Atalay M, Sahin K (2016) Coenzyme Q10 supplementation modulates NFkappaB and Nrf2 pathways in exercise training. J Sports Sci Med 15(1):196–203

    PubMed  PubMed Central  Google Scholar 

  129. Kabel AM, Elkhoely AA (2017) Ameliorative effect of coenzyme Q10 and/or candesartan on carboplatin-induced nephrotoxicity: roles of apoptosis, transforming growth factor-Β1, nuclear factor kappa-B and the Nrf2/HO-1 pathway. Asian Pac J Cancer Prev 18(6):1629–1636. https://doi.org/10.22034/APJCP.2017.18.6.1629

    Article  PubMed  PubMed Central  Google Scholar 

  130. AO SY, A AF, Abdel Moneim AE, Metwally DM, El-Khadragy MF, Kassab RB (2019) The neuroprotective role of coenzyme Q10 against lead acetate-induced neurotoxicity is mediated by antioxidant, anti-inflammatory and anti-apoptotic activities. Int J Environ Res Public Health 16(16):2895. https://doi.org/10.3390/ijerph16162895

    Article  CAS  Google Scholar 

  131. Arioz BI, Tastan B, Tarakcioglu E, Tufekci KU, Olcum M, Ersoy N, Bagriyanik A, Genc K et al (2019) Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Front Immunol 10:1511. https://doi.org/10.3389/fimmu.2019.01511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Guo Y, Sun J, Li T, Zhang Q, Bu S, Wang Q, Lai D (2017) Melatonin ameliorates restraint stress-induced oxidative stress and apoptosis in testicular cells via NF-κB/iNOS and Nrf2/ HO-1 signaling pathway. Sci Rep 7(1):9599. https://doi.org/10.1038/s41598-017-09943-2

    Article  PubMed  PubMed Central  Google Scholar 

  133. Chen L-Y, Renn T-Y, Liao W-C, Mai F-D, Ho Y-J, Hsiao G, Lee A-W, Chang H-M (2017) Melatonin successfully rescues hippocampal bioenergetics and improves cognitive function following drug intoxication by promoting Nrf2-ARE signaling activity. J Pineal Res 63(2):e12417. https://doi.org/10.1111/jpi.12417

    Article  CAS  Google Scholar 

  134. Zhang T, Xu S, Wu P, Zhou K, Wu L, Xie Z, Xu W, Luo X et al (2019) Mitoquinone attenuates blood-brain barrier disruption through Nrf2/PHB2/OPA1 pathway after subarachnoid hemorrhage in rats. Exp Neurol 317:1–9. https://doi.org/10.1016/j.expneurol.2019.02.009

    Article  CAS  PubMed  Google Scholar 

  135. Zhou J, Wang H, Shen R, Fang J, Yang Y, Dai W, Zhu Y, Zhou M (2018) Mitochondrial-targeted antioxidant MitoQ provides neuroprotection and reduces neuronal apoptosis in experimental traumatic brain injury possibly via the Nrf2-ARE pathway. Am J Transl Res 10(6):1887–1899

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Turkseven S, Bolognesi M, Brocca A, Angeli P, Pascoli MD (2018) In cirrhotic rats, mitochondria-targeted antioxidant mitoquinone attenuates liver inflammation and fibrosis by modulating oxidative stress and mitophagy. J Hepatol 68:S466–S467. https://doi.org/10.1016/S0168-8278(18)31178-4

    Article  Google Scholar 

  137. Li G, Chan YL, Sukjamnong S, Anwer AG, Vindin H, Padula M, Zakarya R, George J et al (2019) A mitochondrial specific antioxidant reverses metabolic dysfunction and fatty liver induced by maternal cigarette smoke in mice. Nutrients 11(7):1669

    Article  CAS  PubMed Central  Google Scholar 

  138. Kang JW, Hong JM, Lee SM (2016) Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis. J Pineal Res 60(4):383–393. https://doi.org/10.1111/jpi.12319

    Article  CAS  PubMed  Google Scholar 

  139. Ma S, Chen J, Feng J, Zhang R, Fan M, Han D, Li X, Li C et al (2018) Melatonin ameliorates the progression of atherosclerosis via mitophagy activation and NLRP3 inflammasome inhibition. Oxidative Med Cell Longev 2018:12. https://doi.org/10.1155/2018/9286458

    Article  CAS  Google Scholar 

  140. Wang S, Zhao Z, Feng X, Cheng Z, Xiong Z, Wang T, Lin J, Zhang M et al (2018) Melatonin activates Parkin translocation and rescues the impaired mitophagy activity of diabetic cardiomyopathy through Mst1 inhibition. J Cell Mol Med 22(10):5132–5144. https://doi.org/10.1111/jcmm.13802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Van Laar VS, Roy N, Liu A, Rajprohat S, Arnold B, Dukes AA, Holbein CD, Berman SB (2015) Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy. Neurobiol Dis 74:180–193. https://doi.org/10.1016/j.nbd.2014.11.015

    Article  CAS  PubMed  Google Scholar 

  142. Dludla PV, Dias SC, Obonye N, Johnson R, Louw J, Nkambule BB (2018) A systematic review on the protective effect of N-acetyl cysteine against diabetes-associated cardiovascular complications. Am J Cardiovasc Drugs : Drugs, Devices, and Other Interventions 18(4):283–298. https://doi.org/10.1007/s40256-018-0275-2

    Article  CAS  PubMed  Google Scholar 

  143. Peoples JN, Saraf A, Ghazal N, Pham TT, Kwong JQ (2019) Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med 51(12):1–13. https://doi.org/10.1038/s12276-019-0355-7

    Article  CAS  PubMed  Google Scholar 

  144. Saddadi F, Alatab S, Pasha F, Ganji MR, Soleimanian T (2014) The effect of treatment with N-acetylcysteine on the serum levels of C-reactive protein and interleukin-6 in patients on hemodialysis. Saudi J Kidney Diseases Transplant : an official publication of the Saudi Center for Organ Transplantation, Saudi Arabia 25(1):66–72. https://doi.org/10.4103/1319-2442.124489

    Article  Google Scholar 

  145. Nizomov A (2015) Effect of N-acetylcysteine indicators of proinflammatory cytokines in patients with acute coronary syndrome with st segment elevation. Atherosclerosis 241(1):e87. https://doi.org/10.1016/j.atherosclerosis.2015.04.305

    Article  Google Scholar 

  146. Nascimento MM, Suliman ME, Silva M, Chinaglia T, Marchioro J, Hayashi SY, Riella MC, Lindholm B et al (2010) Effect of oral N-acetylcysteine treatment on plasma inflammatory and oxidative stress markers in peritoneal dialysis patients: a placebo-controlled study. Perit Dial Int 30(3):336–342. https://doi.org/10.3747/pdi.2009.00073

    Article  CAS  PubMed  Google Scholar 

  147. Klauser P, Xin L, Fournier M, Griffa A, Cleusix M, Jenni R, Cuenod M, Gruetter R et al (2018) N-acetylcysteine add-on treatment leads to an improvement of fornix white matter integrity in early psychosis: a double-blind randomized placebo-controlled trial. Transl Psychiatry 8(1):220. https://doi.org/10.1038/s41398-018-0266-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mullier E, Roine T, Griffa A, Xin L, Baumann PS, Klauser P, Cleusix M, Jenni R et al (2019) N-acetyl-cysteine supplementation improves functional connectivity within the cingulate cortex in early psychosis: a pilot study. Int J Neuropsychopharmacol 22(8):478–487. https://doi.org/10.1093/ijnp/pyz022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Berk M, Dean O, Cotton SM, Gama CS, Kapczinski F, Fernandes BS, Kohlmann K, Jeavons S et al (2011) The efficacy of N-acetylcysteine as an adjunctive treatment in bipolar depression: an open label trial. J Affect Disord 135(1–3):389–394. https://doi.org/10.1016/j.jad.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  150. Berk M, Dean OM, Cotton SM, Gama CS, Kapczinski F, Fernandes B, Kohlmann K, Jeavons S et al (2012) Maintenance N-acetyl cysteine treatment for bipolar disorder: a double-blind randomized placebo controlled trial. BMC Med 10:91. https://doi.org/10.1186/1741-7015-10-91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fernandes BS, Dean OM, Dodd S, Malhi GS, Berk M (2016) N-acetylcysteine in depressive symptoms and functionality: a systematic review and meta-analysis. J Clin Psychiatry 77(4):e457–e466. https://doi.org/10.4088/JCP.15r09984

    Article  PubMed  Google Scholar 

  152. Firth J, Teasdale SB, Allott K, Siskind D, Marx W, Cotter J, Veronese N, Schuch F et al (2019) The efficacy and safety of nutrient supplements in the treatment of mental disorders: a meta-review of meta-analyses of randomized controlled trials. World Psychiatry 18(3):308–324. https://doi.org/10.1002/wps.20672

    Article  PubMed  PubMed Central  Google Scholar 

  153. Wright DJ, Renoir T, Smith ZM, Frazier AE, Francis PS, Thorburn DR, McGee SL, Hannan AJ et al (2015) N-acetylcysteine improves mitochondrial function and ameliorates behavioral deficits in the R6/1 mouse model of Huntington’s disease. Transl Psychiatry 5(1):e492. https://doi.org/10.1038/tp.2014.131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tardiolo G, Bramanti P, Mazzon E (2018) Overview on the effects of N-acetylcysteine in neurodegenerative diseases. Molecules (Basel, Switzerland) 23(12):3305. https://doi.org/10.3390/molecules23123305

    Article  CAS  Google Scholar 

  155. Aldbass AM, Bhat RS, El-Ansary A (2013) Protective and therapeutic potency of N-acetyl-cysteine on propionic acid-induced biochemical autistic features in rats. J Neuroinflammation 10(1):837. https://doi.org/10.1186/1742-2094-10-42

    Article  CAS  Google Scholar 

  156. Saleh AAS (2015) Anti-neuroinflammatory and antioxidant effects of N-acetyl cysteine in long-term consumption of artificial sweetener aspartame in the rat cerebral cortex. J Basic Appl Zool 72:73–80. https://doi.org/10.1016/j.jobaz.2015.05.001

    Article  CAS  Google Scholar 

  157. Schneider R, Bandiera S, Souza DG, Bellaver B, Caletti G, Quincozes-Santos A, Elisabetsky E, Gomez R (2017) N-acetylcysteine prevents alcohol related neuroinflammation in rats. Neurochem Res 42(8):2135–2141. https://doi.org/10.1007/s11064-017-2218-8

    Article  CAS  PubMed  Google Scholar 

  158. Sun Y, Pu LY, Lu L, Wang XH, Zhang F, Rao JH (2014) N-acetylcysteine attenuates reactive-oxygen-species-mediated endoplasmic reticulum stress during liver ischemia-reperfusion injury. World J Gastroenterol 20(41):15289–15298. https://doi.org/10.3748/wjg.v20.i41.15289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Guo MY, Wang H, Chen YH, Xia MZ, Zhang C, Xu DX (2018) N-acetylcysteine alleviates cadmium-induced placental endoplasmic reticulum stress and fetal growth restriction in mice. PLoS One 13(1):e0191667. https://doi.org/10.1371/journal.pone.0191667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhao S, Liu Y, Wang F, Xu D, Xie P (2018) N-acetylcysteine protects against microcystin-LR-induced endoplasmic reticulum stress and germ cell apoptosis in zebrafish testes. Chemosphere 204:463–473. https://doi.org/10.1016/j.chemosphere.2018.04.020

    Article  CAS  PubMed  Google Scholar 

  161. Singh F, Charles A-L, Schlagowski A-I, Bouitbir J, Bonifacio A, Piquard F, Krähenbühl S, Geny B et al (2015) Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis. Biochimica et Biophysica Acta (BBA) - Mol Cell Res 1853(7):1574–1585. https://doi.org/10.1016/j.bbamcr.2015.03.006

    Article  CAS  Google Scholar 

  162. Majano PL, Medina J, Zubia I, Sunyer L, Lara-Pezzi E, Maldonado-Rodriguez A, Lopez-Cabrera M, Moreno-Otero R (2004) N-acetyl-cysteine modulates inducible nitric oxide synthase gene expression in human hepatocytes. J Hepatol 40(4):632–637. https://doi.org/10.1016/j.jhep.2003.12.009

    Article  CAS  PubMed  Google Scholar 

  163. Whitehead NP, Pham C, Gervasio OL, Allen DG (2008) N-acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice. J Physiol 586(7):2003–2014. https://doi.org/10.1113/jphysiol.2007.148338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Garcia-Roman R, Salazar-Gonzalez D, Rosas S, Arellanes-Robledo J, Beltran-Ramirez O, Fattel-Fazenda S, Villa-Trevino S (2008) The differential NF-kB modulation by S-adenosyl-L-methionine, N-acetylcysteine and quercetin on the promotion stage of chemical hepatocarcinogenesis. Free Radic Res 42(4):331–343. https://doi.org/10.1080/10715760802005169

    Article  CAS  PubMed  Google Scholar 

  165. McQueen G, Lally J, Collier T, Zelaya F, Lythgoe DJ, Barker GJ, Stone JM, McGuire P et al (2018) Effects of N-acetylcysteine on brain glutamate levels and resting perfusion in schizophrenia. Psychopharmacology 235(10):3045–3054. https://doi.org/10.1007/s00213-018-4997-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Das P, Tanious M, Fritz K, Dodd S, Dean OM, Berk M, Malhi GS (2013) Metabolite profiles in the anterior cingulate cortex of depressed patients differentiate those taking N-acetyl-cysteine versus placebo. Austr N Z J Psychiatry 47(4):347–354. https://doi.org/10.1177/0004867412474074

    Article  Google Scholar 

  167. Schmaal L, Veltman DJ, Nederveen A, van den Brink W, Goudriaan AE (2012) N-acetylcysteine normalizes glutamate levels in cocaine-dependent patients: a randomized crossover magnetic resonance spectroscopy study. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 37(9):2143–2152. https://doi.org/10.1038/npp.2012.66

    Article  CAS  Google Scholar 

  168. Durieux AMS, Fernandes C, Murphy D, Labouesse MA, Giovanoli S, Meyer U, Li Q, So P-W et al (2015) Targeting glia with N-acetylcysteine modulates brain glutamate and behaviors relevant to neurodevelopmental disorders in C57BL/6J mice. Front Behav Neurosci 9:343. https://doi.org/10.3389/fnbeh.2015.00343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Reissner KJ, Gipson CD, Tran PK, Knackstedt LA, Scofield MD, Kalivas PW (2015) Glutamate transporter GLT-1 mediates N-acetylcysteine inhibition of cocaine reinstatement. Addict Biol 20(2):316–323. https://doi.org/10.1111/adb.12127

    Article  CAS  PubMed  Google Scholar 

  170. Moriguchi S, Takamiya A, Noda Y, Horita N, Wada M, Tsugawa S, Plitman E, Sano Y et al (2019) Glutamatergic neurometabolite levels in major depressive disorder: a systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Mol Psychiatry 24(7):952–964. https://doi.org/10.1038/s41380-018-0252-9

    Article  CAS  PubMed  Google Scholar 

  171. Luykx JJ, Laban KG, van den Heuvel MP, Boks MP, Mandl RC, Kahn RS, Bakker SC (2012) Region and state specific glutamate downregulation in major depressive disorder: a meta-analysis of (1)H-MRS findings. Neurosci Biobehav Rev 36(1):198–205. https://doi.org/10.1016/j.neubiorev.2011.05.014

    Article  CAS  PubMed  Google Scholar 

  172. Soeiro-de-Souza MG, Henning A, Machado-Vieira R, Moreno RA, Pastorello BF, da Costa Leite C, Vallada H, Otaduy MC (2015) Anterior cingulate glutamate-glutamine cycle metabolites are altered in euthymic bipolar I disorder. Eur Neuropsychopharmacol : the journal of the European College of Neuropsychopharmacology 25(12):2221–2229. https://doi.org/10.1016/j.euroneuro.2015.09.020

    Article  CAS  Google Scholar 

  173. Merritt K, Egerton A, Kempton MJ, Taylor MJ, McGuire PK (2016) Nature of glutamate alterations in schizophrenia: a meta-analysis of proton magnetic resonance spectroscopy studies. JAMA Psychiatry 73(7):665–674. https://doi.org/10.1001/jamapsychiatry.2016.0442

    Article  PubMed  Google Scholar 

  174. Merritt K, Perez-Iglesias R, Sendt KV, Goozee R, Jauhar S, Pepper F, Barker GJ, Glenthoj B et al (2019) Remission from antipsychotic treatment in first episode psychosis related to longitudinal changes in brain glutamate. NPJ Schizophr 5(1):12. https://doi.org/10.1038/s41537-019-0080-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Millea PJ (2009) N-acetylcysteine: multiple clinical applications. Am Fam Physician 80(3):265–269

    PubMed  Google Scholar 

  176. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I et al (2013) The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18(5):522–555. https://doi.org/10.1089/ars.2011.4391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Dukoff DJ, Hogg DW, Hawrysh PJ, Buck LT (2014) Scavenging ROS dramatically increase NMDA receptor whole-cell currents in painted turtle cortical neurons. J Exp Biol 217(Pt 18):3346–3355. https://doi.org/10.1242/jeb.105825

    Article  PubMed  Google Scholar 

  178. Haxaire C, Turpin FR, Potier B, Kervern M, Sinet PM, Barbanel G, Mothet JP, Dutar P et al (2012) Reversal of age-related oxidative stress prevents hippocampal synaptic plasticity deficits by protecting D-serine-dependent NMDA receptor activation. Aging Cell 11(2):336–344. https://doi.org/10.1111/j.1474-9726.2012.00792.x

    Article  CAS  PubMed  Google Scholar 

  179. Wright DJ, Gray LJ, Finkelstein DI, Crouch PJ, Pow D, Pang TY, Li S, Smith ZM et al (2016) N-acetylcysteine modulates glutamatergic dysfunction and depressive behavior in Huntington’s disease. Hum Mol Genet 25(14):2923–2933. https://doi.org/10.1093/hmg/ddw144

    Article  CAS  PubMed  Google Scholar 

  180. Monti DA, Zabrecky G, Kremens D, Liang T-W, Wintering NA, Bazzan AJ, Zhong L, Bowens BK et al (2019) N-acetyl cysteine is associated with dopaminergic improvement in Parkinson’s disease. Clin Pharmacol Ther 106(4):884–890. https://doi.org/10.1002/cpt.1548

    Article  CAS  PubMed  Google Scholar 

  181. Monti DA, Zabrecky G, Kremens D, Liang TW, Wintering NA, Cai J, Wei X, Bazzan AJ et al (2016) N-acetyl cysteine may support dopamine neurons in Parkinson’s disease: preliminary clinical and cell line data. PLoS One 11(6):e0157602. https://doi.org/10.1371/journal.pone.0157602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ezerina D, Takano Y, Hanaoka K, Urano Y, Dick TP (2018) N-acetyl cysteine functions as a fast-acting antioxidant by triggering intracellular H2S and sulfane sulfur production. Cell Chem Biol 25(4):447–459.e444. https://doi.org/10.1016/j.chembiol.2018.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Aldini G, Altomare A, Baron G, Vistoli G, Carini M, Borsani L, Sergio F (2018) N-acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res 52(7):751–762. https://doi.org/10.1080/10715762.2018.1468564

    Article  CAS  PubMed  Google Scholar 

  184. Holmay MJ, Terpstra M, Coles LD, Mishra U, Ahlskog M, Öz G, Cloyd JC, Tuite PJ (2013) N-acetylcysteine boosts brain and blood glutathione in Gaucher and Parkinson diseases. Clin Neuropharmacol 36(4):103–106. https://doi.org/10.1097/WNF.0b013e31829ae713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Coles LD, Tuite PJ, Oz G, Mishra UR, Kartha RV, Sullivan KM, Cloyd JC, Terpstra M (2018) Repeated-dose oral N-acetylcysteine in Parkinson's disease: pharmacokinetics and effect on brain glutathione and oxidative stress. J Clin Pharmacol 58(2):158–167. https://doi.org/10.1002/jcph.1008

    Article  CAS  PubMed  Google Scholar 

  186. Reyes RC, Cittolin-Santos GF, Kim J-E, Won SJ, Brennan-Minnella AM, Katz M, Glass GA, Swanson RA (2016) Neuronal glutathione content and antioxidant capacity can be normalized in situ by N-acetyl cysteine concentrations attained in human cerebrospinal fluid. Neurotherapeutics 13(1):217–225. https://doi.org/10.1007/s13311-015-0404-4

    Article  CAS  PubMed  Google Scholar 

  187. Moss HG, Brown TR, Wiest DB, Jenkins DD (2018) N-acetylcysteine rapidly replenishes central nervous system glutathione measured via magnetic resonance spectroscopy in human neonates with hypoxic-ischemic encephalopathy. J Cereb Blood Flow Metab : official journal of the International Society of Cerebral Blood Flow and Metabolism 38(6):950–958. https://doi.org/10.1177/0271678x18765828

    Article  CAS  Google Scholar 

  188. Lavoie S, Murray MM, Deppen P, Knyazeva MG, Berk M, Boulat O, Bovet P, Bush AI et al (2008) Glutathione precursor, N-acetyl-cysteine, improves mismatch negativity in schizophrenia patients. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 33(9):2187–2199. https://doi.org/10.1038/sj.npp.1301624

    Article  CAS  Google Scholar 

  189. Atalay F, Odabasoglu F, Halici M, Cadirci E, Aydin O, Halici Z, Cakir A (2016) N-acetyl cysteine has both gastro-protective and anti-inflammatory effects in experimental rat models: its gastro-protective effect is related to its in vivo and in vitro antioxidant properties. J Cell Biochem 117(2):308–319. https://doi.org/10.1002/jcb.25193

    Article  CAS  PubMed  Google Scholar 

  190. Zhou J, Coles LD, Kartha RV, Nash N, Mishra U, Lund TC, Cloyd JC (2015) Intravenous administration of stable-labeled N-acetylcysteine demonstrates an indirect mechanism for boosting glutathione and improving redox status. J Pharm Sci 104(8):2619–2626. https://doi.org/10.1002/jps.24482

    Article  CAS  PubMed  Google Scholar 

  191. Zhang F, Lau SS, Monks TJ (2010) The cytoprotective effect of N-acetyl-L-cysteine against ROS-induced cytotoxicity is independent of its ability to enhance glutathione synthesis. Toxicol Sci 120(1):87–97. https://doi.org/10.1093/toxsci/kfq364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Samuni Y, Goldstein S, Dean OM, Berk M (2013) The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta Gen Subj 1830(8):4117–4129. https://doi.org/10.1016/j.bbagen.2013.04.016

    Article  CAS  Google Scholar 

  193. Zuhra K, Tome CS, Masi L, Giardina G, Paulini G, Malagrino F, Forte E, Vicente JB et al (2019) N-acetylcysteine serves as substrate of 3-mercaptopyruvate sulfurtransferase and stimulates sulfide metabolism in colon cancer cells. Cells 8(8):828. https://doi.org/10.3390/cells8080828

    Article  CAS  PubMed Central  Google Scholar 

  194. Filipovic MR, Zivanovic J, Alvarez B, Banerjee R (2018) Chemical biology of H(2)S signaling through persulfidation. Chem Rev 118(3):1253–1337. https://doi.org/10.1021/acs.chemrev.7b00205

    Article  CAS  PubMed  Google Scholar 

  195. Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, Kevil CG, Lefer DJ (2009) Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res 105(4):365–374. https://doi.org/10.1161/CIRCRESAHA.109.199919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Yang G, Zhao K, Ju Y, Mani S, Cao Q, Puukila S, Khaper N, Wu L et al (2013) Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 18(15):1906–1919. https://doi.org/10.1089/ars.2012.4645

    Article  CAS  PubMed  Google Scholar 

  197. Hourihan JM, Kenna JG, Hayes JD (2013) The gasotransmitter hydrogen sulfide induces nrf2-target genes by inactivating the keap1 ubiquitin ligase substrate adaptor through formation of a disulfide bond between cys-226 and cys-613. Antioxid Redox Signal 19(5):465–481. https://doi.org/10.1089/ars.2012.4944

    Article  CAS  PubMed  Google Scholar 

  198. Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, Kim S, Snyder SH (2012) Hydrogen sulfide-linked sulfhydration of NF-kappaB mediates its antiapoptotic actions. Mol Cell 45(1):13–24. https://doi.org/10.1016/j.molcel.2011.10.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Untereiner AA, Fu M, Modis K, Wang R, Ju Y, Wu L (2016) Stimulatory effect of CSE-generated H2S on hepatic mitochondrial biogenesis and the underlying mechanisms. Nitric Oxide Biol Chem 58:67–76. https://doi.org/10.1016/j.niox.2016.06.005

    Article  CAS  Google Scholar 

  200. Sen N (2017) Functional and molecular insights of hydrogen sulfide signaling and protein sulfhydration. J Mol Biol 429(4):543–561. https://doi.org/10.1016/j.jmb.2016.12.015

    Article  CAS  PubMed  Google Scholar 

  201. Shimizu Y, Polavarapu R, Eskla KL, Nicholson CK, Koczor CA, Wang R, Lewis W, Shiva S et al (2018) Hydrogen sulfide regulates cardiac mitochondrial biogenesis via the activation of AMPK. J Mol Cell Cardiol 116:29–40. https://doi.org/10.1016/j.yjmcc.2018.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Dludla PV, Nyambuya TM, Orlando P, Silvestri S, Mxinwa V, Mokgalaboni K, Nkambule BB, Louw J et al (2020) The impact of coenzyme Q(10) on metabolic and cardiovascular disease profiles in diabetic patients: a systematic review and meta-analysis of randomized controlled trials. Endocrinol Diabetes Metab 3(2):e00118. https://doi.org/10.1002/edm2.118

    Article  PubMed  PubMed Central  Google Scholar 

  203. Sangsefidi ZS, Yaghoubi F, Hajiahmadi S, Hosseinzadeh M (2020) The effect of coenzyme Q10 supplementation on oxidative stress: a systematic review and meta-analysis of randomized controlled clinical trials. Food Sci Nutr 8(4):1766–1776. https://doi.org/10.1002/fsn3.1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Forester BP, Harper DG, Georgakas J, Ravichandran C, Madurai N, Cohen BM (2015) Antidepressant effects of open label treatment with coenzyme Q10 in geriatric bipolar depression. J Clin Psychopharmacol 35(3):338–340. https://doi.org/10.1097/JCP.0000000000000326

    Article  PubMed  PubMed Central  Google Scholar 

  205. Mehrpooya M, Yasrebifar F, Haghighi M, Mohammadi Y, Jahangard L (2018) Evaluating the effect of coenzyme Q10 augmentation on treatment of bipolar depression: a double-blind controlled clinical trial. J Clin Psychopharmacol 38(5):460–466. https://doi.org/10.1097/jcp.0000000000000938

    Article  CAS  PubMed  Google Scholar 

  206. Maguire Á, Hargreaves A, Gill M (2018) S83. The impact of coenzyme Q10 on the cognitive deficits and symptoms of schizophrenia: protocol and baseline data of a randomised, placebo-controlled study. Schizophr Bull 44(Suppl 1):S357. https://doi.org/10.1093/schbul/sby018.870

    Article  PubMed Central  Google Scholar 

  207. Ostman B, Sjodin A, Michaelsson K, Byberg L (2012) Coenzyme Q10 supplementation and exercise-induced oxidative stress in humans. Nutrition (Burbank, Los Angeles County, Calif) 28(4):403–417. https://doi.org/10.1016/j.nut.2011.07.010

    Article  CAS  Google Scholar 

  208. Nagase M, Yamamoto Y, Matsumoto N, Arai Y, Hirose N (2018) Increased oxidative stress and coenzyme Q10 deficiency in centenarians. J Clin Biochem Nutr 63(2):129–136. https://doi.org/10.3164/jcbn.17-124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Kontush A, Reich A, Baum K, Spranger T, Finckh B, Kohlschutter A, Beisiegel U (1997) Plasma ubiquinol-10 is decreased in patients with hyperlipidaemia. Atherosclerosis 129(1):119–126. https://doi.org/10.1016/s0021-9150(96)06021-2

    Article  CAS  PubMed  Google Scholar 

  210. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2009) Lower plasma coenzyme Q10 in depression: a marker for treatment resistance and chronic fatigue in depression and a risk factor to cardiovascular disorder in that illness. Neuro Endocrinol Lett 30(4):462–469

    CAS  PubMed  Google Scholar 

  211. McGarry A, McDermott M, Kieburtz K, de Blieck EA, Beal F, Marder K, Ross C, Shoulson I et al (2017) A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in Huntington disease. Neurology 88(2):152–159. https://doi.org/10.1212/WNL.0000000000003478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P (2018) Coenzyme Q(10) supplementation in aging and disease. Front Physiol 9:44–44. https://doi.org/10.3389/fphys.2018.00044

    Article  PubMed  PubMed Central  Google Scholar 

  213. Lapuente-Brun E, Moreno-Loshuertos R, Acín-Pérez R, Latorre-Pellicer A, Colás C, Balsa E, Perales-Clemente E, Quirós PM et al (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340(6140):1567–1570. https://doi.org/10.1126/science.1230381

    Article  CAS  PubMed  Google Scholar 

  214. Genova ML, Lenaz G (2011) New developments on the functions of coenzyme Q in mitochondria. BioFactors (Oxford, England) 37(5):330–354. https://doi.org/10.1002/biof.168

    Article  CAS  Google Scholar 

  215. Yamamura T, Otani H, Nakao Y, Hattori R, Osako M, Imamura H, Das DK (2001) Dual involvement of coenzyme Q10 in redox signaling and inhibition of death signaling in the rat heart mitochondria. Antioxid Redox Signal 3(1):103–112. https://doi.org/10.1089/152308601750100588

    Article  CAS  PubMed  Google Scholar 

  216. Noh YH, Kim KY, Shim MS, Choi SH, Choi S, Ellisman MH, Weinreb RN, Perkins GA et al (2013) Inhibition of oxidative stress by coenzyme Q10 increases mitochondrial mass and improves bioenergetic function in optic nerve head astrocytes. Cell Death Dis 4:e820. https://doi.org/10.1038/cddis.2013.341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Jing L, He MT, Chang Y, Mehta SL, He QP, Zhang JZ, Li PA (2015) Coenzyme Q10 protects astrocytes from ROS-induced damage through inhibition of mitochondria-mediated cell death pathway. Int J Biol Sci 11(1):59–66. https://doi.org/10.7150/ijbs.10174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Duberley KE, Heales SJR, Abramov AY, Chalasani A, Land JM, Rahman S, Hargreaves IP (2014) Effect of coenzyme Q10 supplementation on mitochondrial electron transport chain activity and mitochondrial oxidative stress in coenzyme Q10 deficient human neuronal cells. Int J Biochem Cell Biol 50:60–63. https://doi.org/10.1016/j.biocel.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  219. Singh A, Kumar A (2015) Microglial inhibitory mechanism of coenzyme Q10 against Abeta (1-42) induced cognitive dysfunctions: possible behavioral, biochemical, cellular, and histopathological alterations. Front Pharmacol 6:268. https://doi.org/10.3389/fphar.2015.00268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Alcázar-Fabra M, Navas P, Brea-Calvo G (2016) Coenzyme Q biosynthesis and its role in the respiratory chain structure. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1857(8):1073–1078. https://doi.org/10.1016/j.bbabio.2016.03.010

    Article  CAS  Google Scholar 

  221. Robb EL, Hall AR, Prime TA, Eaton S, Szibor M, Viscomi C, James AM, Murphy MP (2018) Control of mitochondrial superoxide production by reverse electron transport at complex I. J Biol Chem 293(25):9869–9879. https://doi.org/10.1074/jbc.RA118.003647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Scialò F, Sriram A, Fernández-Ayala D, Gubina N, Lõhmus M, Nelson G, Logan A, Cooper HM et al (2016) Mitochondrial ROS produced via reverse electron transport extend animal lifespan. Cell Metab 23(4):725–734. https://doi.org/10.1016/j.cmet.2016.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Scialò F, Fernández-Ayala DJ, Sanz A (2017) Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease. Front Physiol 8:428–428. https://doi.org/10.3389/fphys.2017.00428

    Article  PubMed  PubMed Central  Google Scholar 

  224. Varela-López A, Giampieri F, Battino M, Quiles J (2016) Coenzyme Q and its role in the dietary therapy against aging. Molecules 21(3):373. https://doi.org/10.3390/molecules21030373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Thanh TB, Thanh HN, Thi Minh HP, Vu Duc L (2016) Protective effect of coenzyme Q10 on methamphetamine-induced neurotoxicity in the mouse brain. Trends Med Res 11(1):1–10. https://doi.org/10.3923/tmr.2016.1.10

    Article  CAS  Google Scholar 

  226. Anderson EJ, Katunga LA, Willis MS (2012) Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart. Clin Exp Pharmacol Physiol 39(2):179–193. https://doi.org/10.1111/j.1440-1681.2011.05641.x

    Article  CAS  PubMed  Google Scholar 

  227. Lokhmatikov AV, Voskoboynikova N, Cherepanov DA, Skulachev MV, Steinhoff H-J, Skulachev VP, Mulkidjanian AY (2016) Impact of antioxidants on cardiolipin oxidation in liposomes: why mitochondrial cardiolipin serves as an apoptotic signal? Oxidative Med Cell Longev 2016:19. https://doi.org/10.1155/2016/8679469

    Article  CAS  Google Scholar 

  228. Littarru GP, Tiano L (2007) Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol 37(1):31–37

    Article  CAS  PubMed  Google Scholar 

  229. Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2009) Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium 45(6):643–650. https://doi.org/10.1016/j.ceca.2009.03.012

    Article  CAS  PubMed  Google Scholar 

  230. Musatov A, Robinson NC (2012) Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Free Radic Res 46(11):1313–1326. https://doi.org/10.3109/10715762.2012.717273

    Article  CAS  PubMed  Google Scholar 

  231. Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G (2014) Functional role of cardiolipin in mitochondrial bioenergetics. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1837(4):408–417. https://doi.org/10.1016/j.bbabio.2013.10.006

    Article  CAS  Google Scholar 

  232. Vähäheikkilä M, Peltomaa T, Róg T, Vazdar M, Pöyry S, Vattulainen I (2018) How cardiolipin peroxidation alters the properties of the inner mitochondrial membrane? Chem Phys Lipids 214:15–23. https://doi.org/10.1016/j.chemphyslip.2018.04.005

    Article  CAS  PubMed  Google Scholar 

  233. Echtay KS, Winkler E, Klingenberg M (2000) Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature 408(6812):609–613. https://doi.org/10.1038/35046114

    Article  CAS  PubMed  Google Scholar 

  234. Echtay KS, Winkler E, Frischmuth K, Klingenberg M (2001) Uncoupling proteins 2 and 3 are highly active H+ transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc Natl Acad Sci U S A 98(4):1416–1421. https://doi.org/10.1073/pnas.98.4.1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta Biomembr 1660(1):171–199. https://doi.org/10.1016/j.bbamem.2003.11.012

    Article  CAS  Google Scholar 

  236. Jezek P, Holendova B, Garlid KD, Jaburek M (2018) Mitochondrial uncoupling proteins: subtle regulators of cellular redox signaling. Antioxid Redox Signal 29(7):667–714. https://doi.org/10.1089/ars.2017.7225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Hass DT, Barnstable CJ (2016) Uncoupling protein 2 in the glial response to stress: implications for neuroprotection. Neural Regen Res 11(8):1197–1200. https://doi.org/10.4103/1673-5374.189159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Ho PW, Ho JW, Liu H-F, So DH, Tse ZH, Chan K-H, Ramsden DB, Ho S-L (2012) Mitochondrial neuronal uncoupling proteins: a target for potential disease-modification in Parkinson’s disease. Transl Neurodegeneration 1(1):3–3. https://doi.org/10.1186/2047-9158-1-3

    Article  CAS  Google Scholar 

  239. Diano S, Matthews RT, Patrylo P, Yang L, Beal MF, Barnstable CJ, Horvath TL (2003) Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning. Endocrinology 144(11):5014–5021. https://doi.org/10.1210/en.2003-0667

    Article  CAS  PubMed  Google Scholar 

  240. Andrews ZB, Diano S, Horvath TL (2005) Mitochondrial uncoupling proteins in the CNS: in support of function and survival. Nat Rev Neurosci 6(11):829–840. https://doi.org/10.1038/nrn1767

    Article  CAS  PubMed  Google Scholar 

  241. Lapp DW, Zhang SS, Barnstable CJ (2014) Stat3 mediates LIF-induced protection of astrocytes against toxic ROS by upregulating the UPC2 mRNA pool. Glia 62(2):159–170. https://doi.org/10.1002/glia.22594

    Article  PubMed  Google Scholar 

  242. De Simone R, Ajmone-Cat MA, Pandolfi M, Bernardo A, De Nuccio C, Minghetti L, Visentin S (2015) The mitochondrial uncoupling protein-2 is a master regulator of both M1 and M2 microglial responses. J Neurochem 135(1):147–156. https://doi.org/10.1111/jnc.13244

    Article  CAS  PubMed  Google Scholar 

  243. Andrews ZB (2010) Uncoupling protein-2 and the potential link between metabolism and longevity. Curr Aging Sci 3(2):102–112

    Article  CAS  PubMed  Google Scholar 

  244. Hass DT, Barnstable CJ (2016) Uncoupling protein 2 in the glial response to stress: implications for neuroprotection. Neural Regen Res 11(8):1197–1200. https://doi.org/10.4103/1673-5374.189159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Du R-H, Wu F-F, Lu M, X-d S, Ding J-H, Wu G, Hu G (2016) Uncoupling protein 2 modulation of the NLRP3 inflammasome in astrocytes and its implications in depression. Redox Biol 9:178–187. https://doi.org/10.1016/j.redox.2016.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Hermes G, Nagy D, Waterson M, Zsarnovszky A, Varela L, Hajos M, Horvath TL (2016) Role of mitochondrial uncoupling protein-2 (UCP2) in higher brain functions, neuronal plasticity and network oscillation. Mol Metab 5(6):415–421. https://doi.org/10.1016/j.molmet.2016.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Sun XL, Liu Y, Dai T, Ding JH, Hu G (2011) Uncoupling protein 2 knockout exacerbates depression-like behaviors in mice via enhancing inflammatory response. Neuroscience 192:507–514. https://doi.org/10.1016/j.neuroscience.2011.05.047

    Article  CAS  PubMed  Google Scholar 

  248. Gigante AD, Andreazza AC, Lafer B, Yatham LN, Beasley CL, Young LT (2011) Decreased mRNA expression of uncoupling protein 2, a mitochondrial proton transporter, in post-mortem prefrontal cortex from patients with bipolar disorder and schizophrenia. Neurosci Lett 505(1):47–51. https://doi.org/10.1016/j.neulet.2011.09.064

    Article  CAS  PubMed  Google Scholar 

  249. Ramsden DB, Ho PW, Ho JW, Liu HF, So DH, Tse HM, Chan KH, Ho SL (2012) Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction. Brain Behav 2(4):468–478. https://doi.org/10.1002/brb3.55

    Article  PubMed  PubMed Central  Google Scholar 

  250. Hyun DH, Emerson SS, Jo DG, Mattson MP, de Cabo R (2006) Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging. Proc Natl Acad Sci 103(52):19908–19912. https://doi.org/10.1073/pnas.0608008103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Hyun DH, Lee GH (2015) Cytochrome b5 reductase, a plasma membrane redox enzyme, protects neuronal cells against metabolic and oxidative stress through maintaining redox state and bioenergetics. Age (Dordr) 37(6):122. https://doi.org/10.1007/s11357-015-9859-9

    Article  CAS  Google Scholar 

  252. Kim J, Kim SK, Kim HK, Mattson MP, Hyun DH (2013) Mitochondrial function in human neuroblastoma cells is up-regulated and protected by NQO1, a plasma membrane redox enzyme. PLoS One 8(7):e69030. https://doi.org/10.1371/journal.pone.0069030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Hyun DH, Kim J, Moon C, Lim CJ, de Cabo R, Mattson MP (2012) The plasma membrane redox enzyme NQO1 sustains cellular energetics and protects human neuroblastoma cells against metabolic and proteotoxic stress. Age (Dordr) 34(2):359–370. https://doi.org/10.1007/s11357-011-9245-1

    Article  CAS  Google Scholar 

  254. Hyun D-H, Hernandez JO, Mattson MP, de Cabo R (2006) The plasma membrane redox system in aging. Ageing Res Rev 5(2):209–220. https://doi.org/10.1016/j.arr.2006.03.005

    Article  CAS  PubMed  Google Scholar 

  255. Dudek J (2017) Role of cardiolipin in mitochondrial signaling pathways. Front Cell Dev Biol 5:90. https://doi.org/10.3389/fcell.2017.00090

    Article  PubMed  PubMed Central  Google Scholar 

  256. Hyun D-H, Hunt ND, Emerson SS, Hernandez JO, Mattson MP, Rd C (2006) Up-regulation of plasma membrane-associated redox activities in neuronal cells lacking functional mitochondria. J Neurochem 100(5):1364–1374. https://doi.org/10.1111/j.1471-4159.2006.04411.x

    Article  CAS  Google Scholar 

  257. Hyun DH, Hunt ND, Emerson SS, Hernandez JO, Mattson MP, de Cabo R (2007) Up-regulation of plasma membrane-associated redox activities in neuronal cells lacking functional mitochondria. J Neurochem 100(5):1364–1374. https://doi.org/10.1111/j.1471-4159.2006.04411.x

    Article  CAS  PubMed  Google Scholar 

  258. Navas P, Villalba JM, de Cabo R (2007) The importance of plasma membrane coenzyme Q in aging and stress responses. Mitochondrion (7 Suppl):S34–S40. https://doi.org/10.1016/j.mito.2007.02.010

  259. Navarro F, Navas P, Burgess JR, Bello RI, De Cabo R, Arroyo A, Villalba JM (1998) Vitamin E and selenium deficiency induces expression of the ubiquinone-dependent antioxidant system at the plasma membrane. FASEB J 12(15):1665–1673. https://doi.org/10.1096/fasebj.12.15.1665

    Article  CAS  PubMed  Google Scholar 

  260. Arroyo A, Kagan VE, Tyurin VA, Burgess JR, de Cabo R, Navas P, Villalba JM (2000) NADH and NADPH-dependent reduction of coenzyme Q at the plasma membrane. Antioxid Redox Signal 2(2):251–262. https://doi.org/10.1089/ars.2000.2.2-251

    Article  CAS  PubMed  Google Scholar 

  261. Beyer RE, Segura-Aguilar J, Di Bernardo S, Cavazzoni M, Fato R, Fiorentini D, Galli MC, Setti M et al (1996) The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems. Proc Natl Acad Sci 93(6):2528–2532. https://doi.org/10.1073/pnas.93.6.2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Kishi T, Takahashi T, Usui A, Hashizume N, Okamoto T (1999) Cytosolic NADPH-UQ reductase, the enzyme responsible for cellular ubiquinone redox cycle as an endogenous antioxidant in the rat liver. BioFactors (Oxford, England) 9(2–4):189–197. https://doi.org/10.1002/biof.5520090214

    Article  CAS  Google Scholar 

  263. Takahashi T, Okuno M, Okamoto T, Kishi T (2008) NADPH-dependent coenzyme Q reductase is the main enzyme responsible for the reduction of non-mitochondrial CoQ in cells. BioFactors (Oxford, England) 32(1–4):59–70

    Article  CAS  Google Scholar 

  264. Takahashi T, Yamaguchi T, Shitashige M, Okamoto T, Kishi T (1995) Reduction of ubiquinone in membrane lipids by rat liver cytosol and its involvement in the cellular defence system against lipid peroxidation. Biochem J 309(3):883–890. https://doi.org/10.1042/bj3090883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Rushmore TH, Morton MR, Pickett CB (1991) The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem 266(18):11632–11639

    Article  CAS  PubMed  Google Scholar 

  266. Kim HK, Son TG, Jo DG, Kim DC, Hyun DH (2016) Cytotoxicity of lipid-soluble ginseng extracts is attenuated by plasma membrane redox enzyme NQO1 through maintaining redox homeostasis and delaying apoptosis in human neuroblastoma cells. Arch Pharm Res 39(10):1339–1348. https://doi.org/10.1007/s12272-016-0817-6

    Article  CAS  PubMed  Google Scholar 

  267. Samhan-Arias AK, Marques-da-Silva D, Yanamala N, Gutierrez-Merino C (2012) Stimulation and clustering of cytochrome b5 reductase in caveolin-rich lipid microdomains is an early event in oxidative stress-mediated apoptosis of cerebellar granule neurons. J Proteome 75(10):2934–2949. https://doi.org/10.1016/j.jprot.2011.12.007

    Article  CAS  Google Scholar 

  268. Schmelzer C, Lindner I, Rimbach G, Niklowitz P, Menke T, Doring F (2008) Functions of coenzyme Q10 in inflammation and gene expression. BioFactors (Oxford, England) 32(1–4):179–183. https://doi.org/10.1002/biof.5520320121

    Article  CAS  Google Scholar 

  269. Wagner AE, Ernst IMA, Birringer M, Sancak Ö, Barella L, Rimbach G (2012) A combination of lipoic acid plus coenzyme Q10 induces PGC1α, a master switch of energy metabolism, improves stress response, and increases cellular glutathione levels in cultured C2C12 skeletal muscle cells. Oxidative Med Cell Longev 2012:1–9. https://doi.org/10.1155/2012/835970

    Article  CAS  Google Scholar 

  270. Choi H-K, Pokharel YR, Lim SC, Han H-K, Ryu CS, Kim SK, Kwak MK, Kang KW (2009) Inhibition of liver fibrosis by solubilized coenzyme Q10: role of Nrf2 activation in inhibiting transforming growth factor-β1 expression. Toxicol Appl Pharmacol 240(3):377–384. https://doi.org/10.1016/j.taap.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  271. Garnier A, Fortin D, Zoll J, N’Guessan B, Mettauer B, Lampert E, Veksler V, Ventura-Clapier R (2005) Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J 19(1):43–52. https://doi.org/10.1096/fj.04-2173com

    Article  CAS  PubMed  Google Scholar 

  272. Austin S, St-Pierre J (2012) PGC1α and mitochondrial metabolism – emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci 125(21):4963–4971. https://doi.org/10.1242/jcs.113662

    Article  CAS  PubMed  Google Scholar 

  273. Nijland PG, Witte ME, van het Hof B, van der Pol S, Bauer J, Lassmann H, van der Valk P, de Vries HE et al (2014) Astroglial PGC-1alpha increases mitochondrial antioxidant capacity and suppresses inflammation: implications for multiple sclerosis. Acta Neuropathol Commun 2(1):170. https://doi.org/10.1186/s40478-014-0170-2

    Article  PubMed  PubMed Central  Google Scholar 

  274. Cheng C-F, Ku H-C, Lin H (2018) PGC-1α as a pivotal factor in lipid and metabolic regulation. Int J Mol Sci 19(11):3447. https://doi.org/10.3390/ijms19113447

    Article  CAS  PubMed Central  Google Scholar 

  275. Sweeney G, Song J (2016) The association between PGC-1α and Alzheimer’s disease. Anat Cell Biol 49(1):1–6. https://doi.org/10.5115/acb.2016.49.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  276. McMeekin LJ, Lucas EK, Meador-Woodruff JH, McCullumsmith RE, Hendrickson RC, Gamble KL, Cowell RM (2016) Cortical PGC-1alpha-dependent transcripts are reduced in postmortem tissue from patients with schizophrenia. Schizophr Bull 42(4):1009–1017. https://doi.org/10.1093/schbul/sbv184

    Article  PubMed  Google Scholar 

  277. Nierenberg AA, Ghaznavi SA, Sande Mathias I, Ellard KK, Janos JA, Sylvia LG (2018) Peroxisome proliferator-activated receptor gamma coactivator-1 alpha as a novel target for bipolar disorder and other neuropsychiatric disorders. Biol Psychiatry 83(9):761–769. https://doi.org/10.1016/j.biopsych.2017.12.014

    Article  CAS  PubMed  Google Scholar 

  278. Shen J, Rasmussen M, Dong QR, Tepel M, Scholze A (2017) Expression of the NRF2 target gene NQO1 is enhanced in mononuclear cells in human chronic kidney disease. Oxidative Med Cell Longev 2017:9091879. https://doi.org/10.1155/2017/9091879

    Article  CAS  Google Scholar 

  279. Thekkeveedu RK, Chu C, Moorthy B (2018) Role of Nrf2 and NQO1 in the attenuation of oxygen-mediated pulmonary toxicity by sulforaphane. Pediatrics 142(1 MeetingAbstract):178–178. https://doi.org/10.1542/peds.142.1_MeetingAbstract.178

    Article  Google Scholar 

  280. Tian G, Sawashita J, Kubo H, Nishio S-Y, Hashimoto S, Suzuki N, Yoshimura H, Tsuruoka M et al (2014) Ubiquinol-10 supplementation activates mitochondria functions to decelerate senescence in senescence-accelerated mice. Antioxid Redox Signal 20(16):2606–2620. https://doi.org/10.1089/ars.2013.5406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Morris G, Berk M, Walder K, Maes M (2015) Central pathways causing fatigue in neuro-inflammatory and autoimmune illnesses. BMC Med 13(1):28

    Article  PubMed  PubMed Central  Google Scholar 

  282. Schmelzer C, Kitano M, Hosoe K, Doring F (2012) Ubiquinol affects the expression of genes involved in PPARalpha signalling and lipid metabolism without changes in methylation of CpG promoter islands in the liver of mice. J Clin Biochem Nutr 50(2):119–126. https://doi.org/10.3164/jcbn.11-19

    Article  CAS  PubMed  Google Scholar 

  283. Schmelzer C, Kubo H, Mori M, Sawashita J, Kitano M, Hosoe K, Boomgaarden I, Döring F et al (2009) Supplementation with the reduced form of coenzyme Q10 decelerates phenotypic characteristics of senescence and induces a peroxisome proliferator-activated receptor-α gene expression signature in SAMP1 mice. Mol Nutr Food Res 54(6):805–815. https://doi.org/10.1002/mnfr.200900155

    Article  CAS  Google Scholar 

  284. Abd El-Aal SA, Abd El-Fattah MA, El-Abhar HS (2017) CoQ10 augments rosuvastatin neuroprotective effect in a model of global ischemia via inhibition of NF-kappaB/JNK3/Bax and activation of Akt/FOXO3A/Bim cues. Front Pharmacol 8:735. https://doi.org/10.3389/fphar.2017.00735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Miller VJ, Villamena FA, Volek JS (2018) Nutritional ketosis and mitohormesis: potential implications for mitochondrial function and human health. J Nutr Metab 2018:5157645. https://doi.org/10.1155/2018/5157645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Sanchez-Barcelo EJ, Mediavilla MD, Tan DX, Reiter RJ (2010) Clinical uses of melatonin: evaluation of human trials. Curr Med Chem 17(19):2070–2095. https://doi.org/10.2174/092986710791233689

    Article  CAS  PubMed  Google Scholar 

  287. Opie LH, Lecour S (2016) Melatonin has multiorgan effects. Eur Heart J - Cardiovasc Pharmacother 2(4):258–265. https://doi.org/10.1093/ehjcvp/pvv037

    Article  CAS  PubMed  Google Scholar 

  288. Jiki Z, Lecour S, Nduhirabandi F (2018) Cardiovascular benefits of dietary melatonin: a myth or a reality? Front Physiol 9:528–528. https://doi.org/10.3389/fphys.2018.00528

    Article  PubMed  PubMed Central  Google Scholar 

  289. Morera-Fumero AL, Abreu-Gonzalez P (2013) Role of melatonin in schizophrenia. Int J Mol Sci 14(5):9037–9050. https://doi.org/10.3390/ijms14059037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Geoffroy PA, Etain B, Franchi JA, Bellivier F, Ritter P (2015) Melatonin and melatonin agonists as adjunctive treatments in bipolar disorders. Curr Pharm Des 21(23):3352–3358. https://doi.org/10.2174/1381612821666150619093448

    Article  CAS  PubMed  Google Scholar 

  291. Mahmood D, Muhammad BY, Alghani M, Anwar J, el-Lebban N, Haider M (2016) Advancing role of melatonin in the treatment of neuropsychiatric disorders. Egypt J Basic Appl Sci 3(3):203–218. https://doi.org/10.1016/j.ejbas.2016.07.001

    Article  Google Scholar 

  292. Gargoloff PD, Corral R, Herbst L, Marquez M, Martinotti G, Gargoloff PR (2016) Effectiveness of agomelatine on anhedonia in depressed patients: an outpatient, open-label, real-world study. Human Psychopharmacol 31(6):412–418. https://doi.org/10.1002/hup.2557

    Article  CAS  Google Scholar 

  293. Rodriguez MI, Carretero M, Escames G, Lopez LC, Maldonado MD, Tan DX, Reiter RJ, Acuna-Castroviejo D (2007) Chronic melatonin treatment prevents age-dependent cardiac mitochondrial dysfunction in senescence-accelerated mice. Free Radic Res 41(1):15–24. https://doi.org/10.1080/10715760600936359

    Article  CAS  PubMed  Google Scholar 

  294. Acuña-Castroviejo D, López LC, Escames G, Lopez A, Garcia JA, Reiter RJ (2011) Melatonin-mitochondria interplay in health and disease. Curr Top Med Chem 11(2):221–240. https://doi.org/10.2174/156802611794863517

    Article  PubMed  Google Scholar 

  295. Lopez LC, Escames G, Ortiz F, Ros E, Acuna-Castroviejo D (2006) Melatonin restores the mitochondrial production of ATP in septic mice. Neuro Endocrinol Lett 27(5):623–630

    CAS  PubMed  Google Scholar 

  296. Garcia JJ, Pinol-Ripoll G, Martinez-Ballarin E, Fuentes-Broto L, Miana-Mena FJ, Venegas C, Caballero B, Escames G et al (2011) Melatonin reduces membrane rigidity and oxidative damage in the brain of SAMP8 mice. Neurobiol Aging 32(11):2045–2054. https://doi.org/10.1016/j.neurobiolaging.2009.12.013

    Article  CAS  PubMed  Google Scholar 

  297. Carretero M, Escames G, Lopez LC, Venegas C, Dayoub JC, Garcia L, Acuna-Castroviejo D (2009) Long-term melatonin administration protects brain mitochondria from aging. J Pineal Res 47(2):192–200. https://doi.org/10.1111/j.1600-079X.2009.00700.x

    Article  CAS  PubMed  Google Scholar 

  298. Escames G, López A, García JA, García L, Acuña-Castroviejo D, García JJ, López LC (2010) The role of mitochondria in brain aging and the effects of melatonin. Curr Neuropharmacol 8(3):182–193. https://doi.org/10.2174/157015910792246245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Petrosillo G, Fattoretti P, Matera M, Ruggiero FM, Bertoni-Freddari C, Paradies G (2008) Melatonin prevents age-related mitochondrial dysfunction in rat brain via cardiolipin protection. Rejuvenation Res 11(5):935–943. https://doi.org/10.1089/rej.2008.0772

    Article  CAS  PubMed  Google Scholar 

  300. Mecha M, Feliu A, Machin I, Cordero C, Carrillo-Salinas F, Mestre L, Hernandez-Torres G, Ortega-Gutierrez S et al (2018) 2-AG limits Theiler’s virus induced acute neuroinflammation by modulating microglia and promoting MDSCs. Glia 66(7):1447–1463. https://doi.org/10.1002/glia.23317

    Article  PubMed  Google Scholar 

  301. Yang L, Wang J, Deng Y, Gong C, Li Q, Chen Q, Li H, Jiang C et al (2018) Melatonin improves neurological outcomes and preserves hippocampal mitochondrial function in a rat model of cardiac arrest. PLoS One 13(11):e0207098. https://doi.org/10.1371/journal.pone.0207098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Brazao V, Santello FH, Colato RP, Mazotti TT, Tazinafo LF, Toldo MPA, do Vale GT, Tirapelli CR et al (2017) Melatonin: antioxidant and modulatory properties in age-related changes during Trypanosoma cruzi infection. J Pineal Res 63(1):110922. https://doi.org/10.1111/jpi.12409

    Article  CAS  Google Scholar 

  303. Reiter RJ, Rosales-Corral S, Tan DX, Jou MJ, Galano A, Xu B (2017) Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell Mol Life Sci 74(21):3863–3881. https://doi.org/10.1007/s00018-017-2609-7

    Article  CAS  PubMed  Google Scholar 

  304. Venegas C, Garcia JA, Escames G, Ortiz F, Lopez A, Doerrier C, Garcia-Corzo L, Lopez LC et al (2012) Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res 52(2):217–227. https://doi.org/10.1111/j.1600-079X.2011.00931.x

    Article  CAS  PubMed  Google Scholar 

  305. Mayo JC, Sainz RM, Gonzalez-Menendez P, Hevia D, Cernuda-Cernuda R (2017) Melatonin transport into mitochondria. Cell Mol Life Sci 74(21):3927–3940. https://doi.org/10.1007/s00018-017-2616-8

    Article  CAS  PubMed  Google Scholar 

  306. Jou MJ, Peng TI, Yu PZ, Jou SB, Reiter RJ, Chen JY, Wu HY, Chen CC et al (2007) Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis. J Pineal Res 43(4):389–403. https://doi.org/10.1111/j.1600-079X.2007.00490.x

    Article  CAS  PubMed  Google Scholar 

  307. Lowes DA, Webster NR, Murphy MP, Galley HF (2013) Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Br J Anaesth 110(3):472–480. https://doi.org/10.1093/bja/aes577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Zhou XJ, Xu B (2018) Mitochondria: central organelles for melatonin’s antioxidant and anti-aging actions. Molecules (Basel, Switzerland) 23(2):509. https://doi.org/10.3390/molecules23020509

    Article  CAS  Google Scholar 

  309. Galano A, Tan DX, Reiter RJ (2018) Melatonin: a versatile protector against oxidative DNA damage. Molecules 23(3):530. https://doi.org/10.3390/molecules23030530

    Article  CAS  PubMed Central  Google Scholar 

  310. Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D (2018) Melatonin mitigates mitochondrial meltdown: interactions with SIRT3. Int J Mol Sci 19(8):2439. https://doi.org/10.3390/ijms19082439

    Article  CAS  PubMed Central  Google Scholar 

  311. Galano A, Tan DX, Reiter RJ (2013) On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J Pineal Res 54(3):245–257. https://doi.org/10.1111/jpi.12010

    Article  CAS  PubMed  Google Scholar 

  312. Reina M, Martínez A (2018) A new free radical scavenging cascade involving melatonin and three of its metabolites (3OHM, AFMK and AMK). Comput Theor Chem 1123:111–118. https://doi.org/10.1016/j.comptc.2017.11.017

    Article  CAS  Google Scholar 

  313. Escames G, Lopez LC, Tapias V, Utrilla P, Reiter RJ, Hitos AB, Leon J, Rodriguez MI et al (2006) Melatonin counteracts inducible mitochondrial nitric oxide synthase-dependent mitochondrial dysfunction in skeletal muscle of septic mice. J Pineal Res 40(1):71–78. https://doi.org/10.1111/j.1600-079X.2005.00281.x

    Article  CAS  PubMed  Google Scholar 

  314. Tapias V, Escames G, Lopez LC, Lopez A, Camacho E, Carrion MD, Entrena A, Gallo MA et al (2009) Melatonin and its brain metabolite N(1)-acetyl-5-methoxykynuramine prevent mitochondrial nitric oxide synthase induction in parkinsonian mice. J Neurosci Res 87(13):3002–3010. https://doi.org/10.1002/jnr.22123

    Article  CAS  PubMed  Google Scholar 

  315. Parameyong A, Govitrapong P, Chetsawang B (2015) Melatonin attenuates the mitochondrial translocation of mitochondrial fission proteins and Bax, cytosolic calcium overload and cell death in methamphetamine-induced toxicity in neuroblastoma SH-SY5Y cells. Mitochondrion 24:1–8. https://doi.org/10.1016/j.mito.2015.07.004

    Article  CAS  PubMed  Google Scholar 

  316. Parameyong A, Charngkaew K, Govitrapong P, Chetsawang B (2013) Melatonin attenuates methamphetamine-induced disturbances in mitochondrial dynamics and degeneration in neuroblastoma SH-SY5Y cells. J Pineal Res 55(3):313–323. https://doi.org/10.1111/jpi.12078

    Article  CAS  PubMed  Google Scholar 

  317. Suwanjang W, Abramov AY, Charngkaew K, Govitrapong P, Chetsawang B (2016) Melatonin prevents cytosolic calcium overload, mitochondrial damage and cell death due to toxically high doses of dexamethasone-induced oxidative stress in human neuroblastoma SH-SY5Y cells. Neurochem Int 97:34–41. https://doi.org/10.1016/j.neuint.2016.05.003

    Article  CAS  PubMed  Google Scholar 

  318. Lin C, Chao H, Li Z, Xu X, Liu Y, Hou L, Liu N, Ji J (2016) Melatonin attenuates traumatic brain injury-induced inflammation: a possible role for mitophagy. J Pineal Res 61(2):177–186. https://doi.org/10.1111/jpi.12337

    Article  CAS  PubMed  Google Scholar 

  319. Hsiao C-W, Peng T-I, Peng AC, Reiter RJ, Tanaka M, Lai Y-K, Jou M-J (2013) Long-term Aβ exposure augments mCa2+-independent mROS-mediated depletion of cardiolipin for the shift of a lethal transient mitochondrial permeability transition to its permanent mode in NARP cybrids: a protective targeting of melatonin. J Pineal Res 54(1):107–125. https://doi.org/10.1111/jpi.12004

    Article  CAS  PubMed  Google Scholar 

  320. Gilkerson R (2018) A disturbance in the force: cellular stress sensing by the mitochondrial network. Antioxidants (Basel, Switzerland) 7(10):126. https://doi.org/10.3390/antiox7100126

    Article  CAS  Google Scholar 

  321. Galloway CA, Lee H, Yoon Y (2012) Mitochondrial morphology-emerging role in bioenergetics. Free Radic Biol Med 53(12):2218–2228. https://doi.org/10.1016/j.freeradbiomed.2012.09.035

    Article  CAS  PubMed  Google Scholar 

  322. Song C, Zhao J, Fu B, Li D, Mao T, Peng W, Wu H, Zhang Y (2017) Melatonin-mediated upregulation of Sirt3 attenuates sodium fluoride-induced hepatotoxicity by activating the MT1-PI3K/AKT-PGC-1alpha signaling pathway. Free Radic Biol Med 112:616–630. https://doi.org/10.1016/j.freeradbiomed.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  323. Zhou W, Liu Y, Shen J, Yu B, Bai J, Lin J, Guo X, Sun H et al (2019) Melatonin increases bone mass around the prostheses of OVX rats by ameliorating mitochondrial oxidative stress via the SIRT3/SOD2 signaling pathway. Oxidative Med Cell Longev 2019:16. https://doi.org/10.1155/2019/4019619

    Article  CAS  Google Scholar 

  324. Kincaid B, Bossy-Wetzel E (2013) Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Front Aging Neurosci 5:48. https://doi.org/10.3389/fnagi.2013.00048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Hardeland R (2017) Melatonin and the electron transport chain. Cell Mol Life Sci 74(21):3883–3896. https://doi.org/10.1007/s00018-017-2615-9

    Article  CAS  PubMed  Google Scholar 

  326. Yu L, Gong B, Duan W, Fan C, Zhang J, Li Z, Xue X, Xu Y et al (2017) Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1alpha-SIRT3 signaling. Sci Rep 7:41337. https://doi.org/10.1038/srep41337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Zhai M, Li B, Duan W, Jing L, Zhang B, Zhang M, Yu L, Liu Z et al (2017) Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis. J Pineal Res 63(2):e12419. https://doi.org/10.1111/jpi.12419

    Article  CAS  Google Scholar 

  328. Wacker D, Stevens RC, Roth BL (2017) How ligands illuminate GPCR molecular pharmacology. Cell 170(3):414–427. https://doi.org/10.1016/j.cell.2017.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Cecon E, Oishi A, Jockers R (2018) Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br J Pharmacol 175(16):3263–3280. https://doi.org/10.1111/bph.13950

    Article  CAS  PubMed  Google Scholar 

  330. Ahluwalia A, Brzozowska IM, Hoa N, Jones MK, Tarnawski AS (2018) Melatonin signaling in mitochondria extends beyond neurons and neuroprotection: implications for angiogenesis and cardio/gastroprotection. Proc Natl Acad Sci 115(9):E1942–E1943. https://doi.org/10.1073/pnas.1722131115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK, Li J, Baranov SV, Leronni D et al (2017) Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci U S A 114(38):E7997–E8006. https://doi.org/10.1073/pnas.1705768114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Koh PO (2008) Melatonin prevents ischemic brain injury through activation of the mTOR/p70S6 kinase signaling pathway. Neurosci Lett 444(1):74–78. https://doi.org/10.1016/j.neulet.2008.08.024

    Article  CAS  PubMed  Google Scholar 

  333. Liu D, Ma Z, Di S, Yang Y, Yang J, Xu L, Reiter RJ, Qiao S et al (2018) AMPK/PGC1alpha activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis. Free Radic Biol Med 129:59–72. https://doi.org/10.1016/j.freeradbiomed.2018.08.032

    Article  CAS  PubMed  Google Scholar 

  334. Rui BB, Chen H, Jang L, Li Z, Yang JM, Xu WP, Wei W (2016) Melatonin upregulates the activity of AMPK and attenuates lipid accumulation in alcohol-induced rats. Alcohol Alcohol (Oxford, Oxfordshire) 51(1):11–19. https://doi.org/10.1093/alcalc/agv126

    Article  CAS  Google Scholar 

  335. Janjetovic Z, Jarrett SG, Lee EF, Duprey C, Reiter RJ, Slominski AT (2017) Melatonin and its metabolites protect human melanocytes against UVB-induced damage: involvement of NRF2-mediated pathways. Sci Rep 7(1):1274. https://doi.org/10.1038/s41598-017-01305-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Kleszczynski K, Zillikens D, Fischer TW (2016) Melatonin enhances mitochondrial ATP synthesis, reduces reactive oxygen species formation, and mediates translocation of the nuclear erythroid 2-related factor 2 resulting in activation of phase-2 antioxidant enzymes (gamma-GCS, HO-1, NQO1) in ultraviolet radiation-treated normal human epidermal keratinocytes (NHEK). J Pineal Res 61(2):187–197. https://doi.org/10.1111/jpi.12338

    Article  CAS  PubMed  Google Scholar 

  337. Morris G, Puri BK, Walker AJ, Berk M, Walder K, Bortolasci CC, Marx W, Carvalho AF et al (2019) The compensatory antioxidant response system with a focus on neuroprogressive disorders. Progress Neuro-psychopharmacol Biol Psychiatry 95:109708. https://doi.org/10.1016/j.pnpbp.2019.109708

    Article  CAS  Google Scholar 

  338. Cao S, Shrestha S, Li J, Yu X, Chen J, Yan F, Ying G, Gu C et al (2017) Melatonin-mediated mitophagy protects against early brain injury after subarachnoid hemorrhage through inhibition of NLRP3 inflammasome activation. Sci Rep 7(1):2417. https://doi.org/10.1038/s41598-017-02679-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Wang X, Xue G-X, Liu W-C, Shu H, Wang M, Sun Y, Liu X, Sun YE et al (2017) Melatonin alleviates lipopolysaccharide-compromised integrity of blood–brain barrier through activating AMP-activated protein kinase in old mice. Aging Cell 16(2):414–421. https://doi.org/10.1111/acel.12572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Hu Y, Wang Z, Pan S, Zhang H, Fang M, Jiang H, Zhang H, Gao Z et al (2017) Melatonin protects against blood-brain barrier damage by inhibiting the TLR4/ NF-κB signaling pathway after LPS treatment in neonatal rats. Oncotarget 8(19):31638–31654. https://doi.org/10.18632/oncotarget.15780

    Article  PubMed  PubMed Central  Google Scholar 

  341. Liu WC, Wang X, Zhang X, Chen X, Jin X (2017) Melatonin supplementation, a strategy to prevent neurological diseases through maintaining integrity of blood brain barrier in old people. Front Aging Neurosci 9:165. https://doi.org/10.3389/fnagi.2017.00165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Sommansson A, Yamskova O, Schioth HB, Nylander O, Sjoblom M (2014) Long-term oral melatonin administration reduces ethanol-induced increases in duodenal mucosal permeability and motility in rats. Acta Physiol (Oxford) 212(2):152–165. https://doi.org/10.1111/apha.12339

    Article  CAS  Google Scholar 

  343. Sommansson A, Nylander O, Sjoblom M (2013) Melatonin decreases duodenal epithelial paracellular permeability via a nicotinic receptor-dependent pathway in rats in vivo. J Pineal Res 54(3):282–291. https://doi.org/10.1111/jpi.12013

    Article  CAS  PubMed  Google Scholar 

  344. Sommansson A, Saudi WSW, Nylander O, Sjöblom M (2013) Melatonin inhibits alcohol-induced increases in duodenal mucosal permeability in rats in vivo. Am J Physiol Gastrointest Liver Physiol 305(1):G95–G105. https://doi.org/10.1152/ajpgi.00074.2013

    Article  CAS  PubMed  Google Scholar 

  345. Lucas K, Morris G, Anderson G, Maes M (2015) The Toll-like receptor radical cycle pathway: a new drug target in immune-related chronic fatigue. CNS Neurol Disorders - Drug Targets (Formerly Curr Drug Targets) 14(7):838–854

    Article  CAS  Google Scholar 

  346. Maes M, Kubera M, Leunis JC, Berk M, Geffard M, Bosmans E (2013) In depression, bacterial translocation may drive inflammatory responses, oxidative and nitrosative stress (O&NS), and autoimmune responses directed against O&NS-damaged neoepitopes. Acta Psychiatr Scand 127(5):344–354. https://doi.org/10.1111/j.1600-0447.2012.01908.x

    Article  CAS  PubMed  Google Scholar 

  347. Simeonova D, Stoyanov D, Leunis JC, Carvalho AF, Kubera M, Murdjeva M, Maes M (2019) Increased serum immunoglobulin responses to gut commensal gram-negative bacteria in unipolar major depression and bipolar disorder type 1, especially when melancholia is present. Neurotox Res. https://doi.org/10.1007/s12640-019-00126-7

  348. Maes M, Sirivichayakul S, Kanchanatawan B, Vodjani A (2019) Breakdown of the paracellular tight and adherens junctions in the gut and blood brain barrier and damage to the vascular barrier in patients with deficit schizophrenia. Neurotox Res 36(2):306–322. https://doi.org/10.1007/s12640-019-00054-6

    Article  CAS  PubMed  Google Scholar 

  349. Yin J, Li Y, Han H, Chen S, Gao J, Liu G, Wu X, Deng J et al (2018) Melatonin reprogramming of gut microbiota improves lipid dysmetabolism in high-fat diet-fed mice. J Pineal Res 65(4):e12524. https://doi.org/10.1111/jpi.12524

    Article  CAS  PubMed  Google Scholar 

  350. Xu P, Wang J, Hong F, Wang S, Jin X, Xue T, Jia L, Zhai Y (2017) Melatonin prevents obesity through modulation of gut microbiota in mice. J Pineal Res 62(4):e12399. https://doi.org/10.1111/jpi.12399

    Article  CAS  Google Scholar 

  351. Morris G, Berk M, Carvalho A, Caso JR, Sanz Y, Walder K, Maes M (2017) The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease. Mol Neurobiol 54(6):4432–4451. https://doi.org/10.1007/s12035-016-0004-2

    Article  CAS  PubMed  Google Scholar 

  352. Morris G, Fernandes BS, Puri BK, Walker AJ, Carvalho AF, Berk M (2018) Leaky brain in neurological and psychiatric disorders: drivers and consequences. Aust NZ J Psychiatry 52(10):924–948. https://doi.org/10.1177/0004867418796955

    Article  Google Scholar 

  353. Permpoonputtana K, Tangweerasing P, Mukda S, Boontem P, Nopparat C, Govitrapong P (2018) Long-term administration of melatonin attenuates neuroinflammation in the aged mouse brain. EXCLI J 17:634–646. https://doi.org/10.17179/excli2017-654

    Article  PubMed  PubMed Central  Google Scholar 

  354. Singhakumar R, Boontem P, Ekthuwapranee K, Sotthibundhu A, Mukda S, Chetsawang B, Govitrapong P (2015) Melatonin attenuates methamphetamine-induced inhibition of neurogenesis in the adult mouse hippocampus: an in vivo study. Neurosci Lett 606:209–214. https://doi.org/10.1016/j.neulet.2015.09.011

    Article  CAS  PubMed  Google Scholar 

  355. Tyagi E, Agrawal R, Nath C, Shukla R (2010) Effect of melatonin on neuroinflammation and acetylcholinesterase activity induced by LPS in rat brain. Eur J Pharmacol 640(1–3):206–210. https://doi.org/10.1016/j.ejphar.2010.04.041

    Article  CAS  PubMed  Google Scholar 

  356. Ali T, Rehman SU, Shah FA, Kim MO (2018) Acute dose of melatonin via Nrf2 dependently prevents acute ethanol-induced neurotoxicity in the developing rodent brain. J Neuroinflammation 15(1):119. https://doi.org/10.1186/s12974-018-1157-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Hu L, Zhang S, Wen H, Liu T, Cai J, Du D, Zhu D, Chen F et al (2019) Melatonin decreases M1 polarization via attenuating mitochondrial oxidative damage depending on UCP2 pathway in prorenin-treated microglia. PLoS One 14(2):e0212138. https://doi.org/10.1371/journal.pone.0212138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Ding K, Wang H, Xu J, Lu X, Zhang L, Zhu L (2014) Melatonin reduced microglial activation and alleviated neuroinflammation induced neuron degeneration in experimental traumatic brain injury: possible involvement of mTOR pathway. Neurochem Int 76:23–31. https://doi.org/10.1016/j.neuint.2014.06.015

    Article  CAS  PubMed  Google Scholar 

  359. Zheng ZV, Wong KCG (2019) Microglial activation and polarization after subarachnoid hemorrhage. Neuroimmunol Neuroinflamm. https://doi.org/10.20517/2347-8659.2018.52

  360. Azedi F, Mehrpour M, Talebi S, Zendedel A, Kazemnejad S, Mousavizadeh K, Beyer C, Zarnani AH et al (2019) Melatonin regulates neuroinflammation ischemic stroke damage through interactions with microglia in reperfusion phase. Brain Res 1723:146401. https://doi.org/10.1016/j.brainres.2019.146401

    Article  CAS  PubMed  Google Scholar 

  361. Sutcu R, Yonden Z, Yilmaz A, Delibas N (2006) Melatonin increases NMDA receptor subunits 2A and 2B concentrations in rat hippocampus. Mol Cell Biochem 283(1):101–105. https://doi.org/10.1007/s11010-006-2385-4

    Article  CAS  PubMed  Google Scholar 

  362. Camkurt MA, Findikli E, Izci F, Kurutas EB, Tuman TC (2016) Evaluation of malondialdehyde, superoxide dismutase and catalase activity and their diagnostic value in drug naive, first episode, non-smoker major depression patients and healthy controls. Psychiatry Res 238:81–85. https://doi.org/10.1016/j.psychres.2016.01.075

    Article  CAS  PubMed  Google Scholar 

  363. Bavithra S, Sugantha Priya E, Selvakumar K, Krishnamoorthy G, Arunakaran J (2015) Effect of melatonin on glutamate: BDNF signaling in the cerebral cortex of polychlorinated biphenyls (PCBs)-exposed adult male rats. Neurochem Res 40(9):1858–1869. https://doi.org/10.1007/s11064-015-1677-z

    Article  CAS  PubMed  Google Scholar 

  364. Singhal NK, Srivastava G, Agrawal S, Jain SK, Singh MP (2012) Melatonin as a neuroprotective agent in the rodent models of Parkinson’s disease: is it all set to irrefutable clinical translation? Mol Neurobiol 45(1):186–199. https://doi.org/10.1007/s12035-011-8225-x

    Article  CAS  PubMed  Google Scholar 

  365. Hashimoto K, Ueda S, Ehara A, Sakakibara S, Yoshimoto K, Hirata K (2012) Neuroprotective effects of melatonin on the nigrostriatal dopamine system in the zitter rat. Neurosci Lett 506(1):79–83. https://doi.org/10.1016/j.neulet.2011.10.053

    Article  CAS  PubMed  Google Scholar 

  366. Zaitone SA, Hammad LN, Farag NE (2013) Antioxidant potential of melatonin enhances the response to L-dopa in 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine-parkinsonian mice. Pharmacol Rep : PR 65(5):1213–1226

    Article  CAS  PubMed  Google Scholar 

  367. Naskar A, Prabhakar V, Singh R, Dutta D, Mohanakumar KP (2015) Melatonin enhances L-DOPA therapeutic effects, helps to reduce its dose, and protects dopaminergic neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. J Pineal Res 58(3):262–274. https://doi.org/10.1111/jpi.12212

    Article  CAS  PubMed  Google Scholar 

  368. Uz T, Arslan AD, Kurtuncu M, Imbesi M, Akhisaroglu M, Dwivedi Y, Pandey GN, Manev H (2005) The regional and cellular expression profile of the melatonin receptor MT1 in the central dopaminergic system. Brain Res Mol Brain Res 136(1–2):45–53. https://doi.org/10.1016/j.molbrainres.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  369. Benleulmi-Chaachoua A, Hegron A, Le Boulch M, Karamitri A, Wierzbicka M, Wong V, Stagljar I, Delagrange P et al (2018) Melatonin receptors limit dopamine reuptake by regulating dopamine transporter cell-surface exposure. Cell Mol Life Sci 75(23):4357–4370. https://doi.org/10.1007/s00018-018-2876-y

    Article  CAS  PubMed  Google Scholar 

  370. Alexiuk NA, Vriend J (2007) Melatonin: effects on dopaminergic and serotonergic neurons of the caudate nucleus of the striatum of male Syrian hamsters. J Neural Transm (Vienna, Austria : 1996) 114(5):549–554. https://doi.org/10.1007/s00702-006-0582-7

    Article  CAS  Google Scholar 

  371. Monti JM, BaHammam AS, Pandi-Perumal SR, Bromundt V, Spence DW, Cardinali DP, Brown GM (2013) Sleep and circadian rhythm dysregulation in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 43:209–216. https://doi.org/10.1016/j.pnpbp.2012.12.021

    Article  Google Scholar 

  372. Nuernberg GL, Aguiar B, Bristot G, Fleck MP, Rocha NS (2016) Brain-derived neurotrophic factor increase during treatment in severe mental illness inpatients. Transl Psychiatry 6(12):e985. https://doi.org/10.1038/tp.2016.227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Jung-Hynes B, Huang W, Reiter RJ, Ahmad N (2010) Melatonin resynchronizes dysregulated circadian rhythm circuitry in human prostate cancer cells. J Pineal Res 49(1):60–68. https://doi.org/10.1111/j.1600-079X.2010.00767.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Gonzalez-Fernandez B, Sanchez DI, Crespo I, San-Miguel B, de Urbina JO, Gonzalez-Gallego J, Tunon MJ (2018) Melatonin attenuates dysregulation of the circadian clock pathway in mice with CCl4-induced fibrosis and human hepatic stellate cells. Front Pharmacol 9:556. https://doi.org/10.3389/fphar.2018.00556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Schmitt K, Holsboer-Trachsler E, Eckert A (2016) BDNF in sleep, insomnia, and sleep deprivation. Ann Med 48(1–2):42–51. https://doi.org/10.3109/07853890.2015.1131327

    Article  CAS  PubMed  Google Scholar 

  376. Morris G, Stubbs B, Kohler CA, Walder K, Slyepchenko A, Berk M, Carvalho AF (2018) The putative role of oxidative stress and inflammation in the pathophysiology of sleep dysfunction across neuropsychiatric disorders: focus on chronic fatigue syndrome, bipolar disorder and multiple sclerosis. Sleep Med Rev 41:255–265. https://doi.org/10.1016/j.smrv.2018.03.007

    Article  PubMed  Google Scholar 

  377. Cardinali DP (2019) Melatonin: clinical perspectives in neurodegeneration. Front Endocrinol (Lausanne) 10:480. https://doi.org/10.3389/fendo.2019.00480

    Article  Google Scholar 

  378. Sivandzade F, Prasad S, Bhalerao A, Cucullo L (2019) NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches. Redox Biol 21:101059. https://doi.org/10.1016/j.redox.2018.11.017

    Article  CAS  PubMed  Google Scholar 

  379. Santofimia-Castaño P, Clea Ruy D, Garcia-Sanchez L, Jimenez-Blasco D, Fernandez-Bermejo M, Bolaños JP, Salido GM, Gonzalez A (2015) Melatonin induces the expression of Nrf2-regulated antioxidant enzymes via PKC and Ca2+ influx activation in mouse pancreatic acinar cells. Free Radic Biol Med 87:226–236. https://doi.org/10.1016/j.freeradbiomed.2015.06.033

    Article  CAS  PubMed  Google Scholar 

  380. Sadek KM, Lebda MA, Abouzed TK (2019) The possible neuroprotective effects of melatonin in aluminum chloride-induced neurotoxicity via antioxidant pathway and Nrf2 signaling apart from metal chelation. Environ Sci Pollut Res Int 26(9):9174–9183. https://doi.org/10.1007/s11356-019-04430-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MB is supported by a National Health and Medical Research Council (NHMRC) Senior Principal Research Fellowship (APP1059660 and APP1156072).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing up of the paper. GM and BKP designed and produced the figures.

Corresponding author

Correspondence to B. K. Puri.

Ethics declarations

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, G., Walker, A.J., Walder, K. et al. Increasing Nrf2 Activity as a Treatment Approach in Neuropsychiatry. Mol Neurobiol 58, 2158–2182 (2021). https://doi.org/10.1007/s12035-020-02212-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02212-w

Keywords

Navigation