Skip to main content

Advertisement

Log in

Association of Klotho with Neuropsychiatric Disorder: A Meta-Analysis

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Neuropsychiatric disorders are mainly concerned with the behavioural, emotional and cognition symptoms that may be due to disturbed cerebral functions or extracerebral disease. Klotho protein is an antiaging protein that is mostly associated with cognitive changes in these disorders and thus this meta-analysis is conducted in order to find Klotho proteins association with these disorders. We searched related topics in pubmed, by using the key word i.e. Klotho and related disorder from neuropsychiatry e.g. Klotho levels and schizophrenia, Klotho levels and parkinsonism etc. Total 82 studies were found till 9th February 2021 after extensive search and 10 studies were selected for further analysis. The meta-analysis of studies was performed using the Random effect model. The forest plot represented each study in the meta-analysis, so as to make the comparison of SMD value across studies. The meta-analysis outcome demonstrated that overall schizophrenia had higher klotho levels as compared with bipolar disorder, psychosocial stress, parkinsonism, multiple sclerosis, depression, Alzheimer’s disease, and healthy controls, followed by MS. The meta-analysis also found that bipolar disorder and Alzheimer’s disease were associated with low klotho levels as compared to schizophrenia. The results indicate a significant association of the klotho levels and schizophrenia. Further studies are needed to characterize the potential biological roles of klotho levels in psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Spencer L J, Degu A, Kalkidan H, Solomon M A, Cristiana A, Nooshin A, et al. GBD 2017 Disease and injury incidence and prevalence collaborators Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10190):e44:1789–1858. https://doi.org/10.1016/S0140-6736(18)32279-7.

  2. Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388(10039):86–97. https://doi.org/10.1016/S0140-6736(15)01121-6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lewandowski KE, Cohen BM, Ongur D. Evolution of neuropsychological dysfunction during the course of schizophrenia and bipolar disorder. Psychol Med. 2011;41(2):225–41. https://doi.org/10.1017/S0033291710001042.

    Article  CAS  PubMed  Google Scholar 

  4. Vahia VN. Diagnostic and statistical manual of mental disorders 5: A quick glance. Indian J Psychiatry. 2013;55(3):220–3. https://doi.org/10.4103/0019-5545.117131.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Linden DE. The challenges and promise of neuroimaging in psychiatry. Neuron. 2012;73(1):8–22. https://doi.org/10.1016/j.neuron.2011.12.014.

    Article  CAS  PubMed  Google Scholar 

  6. Haijma SV, Van Haren N, Cahn W, Koolschijn PC, Hulshoff Pol HE, Kahn RS. Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. Schizophr Bull. 2013;39(5):1129–38. https://doi.org/10.1093/schbul/sbs118.

    Article  PubMed  Google Scholar 

  7. Vostrikov VM, Uranova NA, Orlovskaya DD. Deficit of perineuronal oligodendrocytes in the prefrontal cortex in schizophrenia and mood disorders. Schizophr Res. 2007;94(1–3):273–80. https://doi.org/10.1016/j.schres.2007.04.014.

    Article  PubMed  Google Scholar 

  8. Segal D, Schmitz C, Hof PR. Spatial distribution and density of oligodendrocytes in the cingulum bundle are unaltered in schizophrenia. Acta Neuropathol. 2009;117(4):385–94. https://doi.org/10.1007/s00401-008-0379-x.

    Article  PubMed  Google Scholar 

  9. Karlstetter M, Nothdurfter C, Aslanidis A, Katharina M, Felicitas H, Rebecca S, et al. Translocator protein (18 kDa) (TSPO) is expressed in reactive retinal microglia and modulates microglial inflammation and phagocytosis. J Neuroinflammation. 2014;11:3. https://doi.org/10.1186/1742-2094-11-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nelson MD, Saykin AJ, Flashman LA, Riordan HJ. Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Arch Gen Psychiatry. 1998;55(5):433–40. https://doi.org/10.1001/archpsyc.55.5.433.

    Article  CAS  PubMed  Google Scholar 

  11. Abraham CR, Mullen PC, Tucker-Zhou T, Chen CD, Zeldich E. Klotho is a neuroprotective and cognition-enhancing protein. VitamHorm. 2016;101:215–38. https://doi.org/10.1016/bs.vh.2016.02.004.

    Article  CAS  Google Scholar 

  12. Arking DE, Krebsova A, Macek M Sr, Macek M Jr, Arking A, Mian IS, et al. Association of human aging with a functional variant of klotho. Proc Natl Acad Sci U S A. 2002;99(2):856–61. https://doi.org/10.1073/pnas.022484299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Di Bona D, Accardi G, Virruso C, Candore G, Caruso C. Association of Klotho polymorphisms with healthy aging: a systematic review and meta-analysis. Rejuvenation Res. 2014;17(2):212–6. https://doi.org/10.1089/rej.2013.1523.

    Article  CAS  PubMed  Google Scholar 

  14. Dubal DB, Yokoyama JS, Zhu L, Broestl L, Worden K, Wang D, et al. Life extension factor klotho enhances cognition. Cell Rep. 2014;7(4):1065–76. https://doi.org/10.1016/j.celrep.2014.03.076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xiong JW, Zhan JQ, Luo T, Chen HB, Wan QG, Wang Y, et al. Increased plasma level of longevity protein klotho as a potential indicator of cognitive function preservation in patients with schizophrenia. Front Neurosci. 2020;16;1(4):610. https://doi.org/10.3389/fnins.2020.00610.

    Article  Google Scholar 

  16. Barbosa IG, Rocha NP, Alpak G, Vieira ELM, Huguet RB, Rocha FL, et al. Klotho dysfunction: A pathway linking the aging process to bipolar disorder? J Psychiatr Res. 2017;95:80–3. https://doi.org/10.1016/j.jpsychires.2017.08.007.

    Article  PubMed  Google Scholar 

  17. Prather AA, Epel ES, Arenander J, Broestl L, Garay BI, Wang D, et al. Longevity factor klotho and chronic psychological stress. Transl Psychiatry. 2015;5(6):e585. https://doi.org/10.1038/tp.2015.81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo Y, Zhuang XD, Xian WB, Wu LL, Huang ZN, Hu X, et al. Serum Klotho, vitamin D, and homocysteine in combination predict the outcomes of Chinese patients with multiple system atrophy. CNS Neurosci Ther. 2017;23(8):657–66. https://doi.org/10.1111/cns.12711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ghasemi N, Razavi S, Nikzad E. Multiple sclerosis: pathogenesis, symptoms. Diagn Cell-Based Therapy Cell J. 2017;19(1):1–10. https://doi.org/10.22074/cellj.2016.4867.

    Article  Google Scholar 

  20. Ahmadi M, Emami Aleagha MS, Harirchian MH, Yarani R, Tavakoli F, Siroos B. Multiple sclerosis influences on the augmentation of serum Klotho concentration. J Neurol Sci. 2016;3(62):69–72. https://doi.org/10.1016/j.jns.2016.01.012.

    Article  CAS  Google Scholar 

  21. Ellidag HY, Yilmaz N, Kurtulus F, Aydin O, Eren E, Inci A, et al. The three sisters of fate in multiple sclerosis: Klotho (Clotho), fibroblast growth factor-23 (Lachesis), and Vitamin D (Atropos). Ann Neurosci. 2016;23(3):155–61. https://doi.org/10.1159/000449181.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Partlett C, Riley RD. Random effects meta-analysis: coverage performance of 95% confidence and prediction intervals following REML estimation. Stat Med. 2017;36(2):301–17. https://doi.org/10.1002/sim.7140.

    Article  PubMed  Google Scholar 

  24. Huedo-Medina TB, Sánchez-Meca J, Marín-Martínez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods. 2006;11(2):193–206. https://doi.org/10.1037/1082-989X.11.2.193.

    Article  PubMed  Google Scholar 

  25. Maier M, Bartoš F, Wagenmakers EJ. Robust Bayesian meta-analysis: Addressing publication bias with model-averaging. Psychol Methods. 2022. https://doi.org/10.1037/met0000405.

    Article  PubMed  Google Scholar 

  26. Luntz GRWN. Medical research. Br Med J. 1944;1:572. https://doi.org/10.1136/bmj.1.4346.572-a.

    Article  PubMed Central  Google Scholar 

  27. von Hippel PT. The heterogeneity statistic I(2) can be biased in small meta-analyses. BMC Med Res Methodol. 2015;15:35. https://doi.org/10.1186/s12874-015-0024-z.

    Article  Google Scholar 

  28. Birdi A, Kumar PK, Nebhinani N, Gupta T, Tomo S, Purohit P, et al. Association of circulatory Klotho levels and its expression with miRNA- 339 in patients with schizophrenia. Behav Brain Res. 2023;104:8–12. https://doi.org/10.1016/j.bbr.2023.114359.

    Article  CAS  Google Scholar 

  29. Krahn U, Binder H, König J. A graphical tool for locating inconsistency in network meta-analyses. BMC Med Res Methodol. 2013;13(1):13–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmveer Yadav.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Human participants and/or animals

Authors declared that no human participants or animal are involved in the study.

Informed consent

Not applicable (Meta-analysis).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birdi, A., Tomo, S., Sharma, M. et al. Association of Klotho with Neuropsychiatric Disorder: A Meta-Analysis. Ind J Clin Biochem (2023). https://doi.org/10.1007/s12291-023-01132-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12291-023-01132-5

Keywords

Navigation