Skip to main content

Advertisement

Log in

Association of Catechol-O-Methyltransferase Gene Polymorphisms and Haplotypes in the Levodopa-Induced Adverse Events in Subjects with Parkinson’s Disease

  • Original Research Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

The presence of dyskinesia is the most common side effect of chronic administration of levodopa in Parkinson’s disease (PD) subjects. Genetic polymorphisms in levodopa metabolizing gene, catechol-O-methyl transferase (COMT), is shown to influence the inter-individual variability in drug response and adverse events. In the present study, the association of COMT rs6269, rs4633, rs4818, and rs4680 polymorphisms and haplotypes on pharmacokinetics and adverse events with levodopa was investigated in 150 PD patients. The age of onset of PD was 58.00 ± 10 yrs. The most common side effect faced by 78% of the subjects was dyskinesia. The AUC of levodopa was found to be significantly higher in subjects with dyskinesia (1695 ± 113 ng/ml/hr, p < 0.0001) than those without dyskinesia (1550 ± 122 ng/ml/hr). We found that the frequency of subjects presenting dyskinesia was significantly higher in subjects carrying variant genotype of COMT rs6269, rs4633, and rs4680 than that with wild genotype and these subjects presented higher AUC of levodopa. In addition, in subjects with dyskinesia, the AUC of levodopa was found to be significantly higher with low COMT (ACCG) haplotype. The association of COMT rs6269, COMT rs4633, COMT rs4818, and COMT rs4680 variant genotypes with the risk of dyskinesia due to levodopa therapy showed an ROC AUC of 0.67 indicating the moderate prediction of dyskinesia (p = 0.0021) with these COMT variants. In conclusion, PD subjects carrying the variant genotypes of COMT strongly influence high levodopa-induced dyskinesia. Hence the genotyping of COMT before the levodopa therapy will be useful to reduce the adverse events associated with the chronic levodopa treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data is available on request.

References

  1. Cacabelos R. Parkinson’s disease: from pathogenesis to pharmacogenomics. Int J Mol Sci. 2017;18:E551.

    Article  Google Scholar 

  2. Chaudhuri KR, Schapira AH. Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 2009;8:464–74.

    Article  CAS  PubMed  Google Scholar 

  3. Hauser RA, Auinger P, Oakes D. Levodopa response in early Parkinson’s disease. Mov Disord. 2009;24:2328–36.

    Article  PubMed  Google Scholar 

  4. Katzenschlager R, Lees AJ. Treatment of Parkinson’s disease: levodopa as the first choice. J Neurol. 2002;249(2):II19–24.

    PubMed  Google Scholar 

  5. Schumacher-Schuh AF, Altmann V, Rieck M, Tovo-Rodrigues L, Monte TL, Callegari-Jacques SM, Medeiros MS, Rieder CR, Hutz MH. Association of common genetic variants of HOMER1 gene with levodopa adverse effects in Parkinson’s disease patients. Pharmacogenomics J. 2014;14:289–94.

    Article  CAS  PubMed  Google Scholar 

  6. Cacabelos R. Parkinson’s disease: from pathogenesis to pharmacogenomics. Int J Mol Sci. 2017;18(3):551.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Politi C, Ciccacci C, Novelli G, Borgiani P. Genetics and treatment response in Parkinson’s disease: an update on pharmacogenetic studies. Neuromol Med. 2018;20:1–17.

    Article  CAS  Google Scholar 

  8. Annus Á, Vecsei L. Spotlight on opicapone as an adjunct to levodopa in Parkinson’s disease: design, development and potential place in therapy. Drug Des Dev Ther. 2017;11:143–51.

    Article  CAS  Google Scholar 

  9. Torkaman-Boutorabi A, Shahidi GA, Choopani S, Zarrindast MR. Association of monoamine oxidase B and catechol-O-methyltransferase polymorphisms with sporadic Parkinson’s disease in an Iranian population. Folia Neuropathol. 2012;4:382–9.

    Article  Google Scholar 

  10. Espinoza S, Manago F, Leo D, Sotnikova TD, Gainetdinov RR. Role of catechol-O-methyltransferase (COMT)-dependent processes in Parkinson’s disease and L-DOPA treatment. CNS Neurol Disord Drug Targets. 2012;11(3):251–63.

    Article  CAS  PubMed  Google Scholar 

  11. Li T, Chen CK, Hu X, Ball D, Lin SK, Chen W, Sham PC, Lohel W, Murray RM, Collier DA. Association analysis of the DRD4 and COMT genes in methamphetamine abuse. Am J Med Genet B Neuropsychiatr Genet. 2014;129B(1):120–4.

    Article  Google Scholar 

  12. Zhu G, Lipsky RH, Xu K, Ali S, Hyde T, Kleinman J, Akhtar LA, Mash DC, Goldman D. Differential expression of human COMT alleles in brain and lymphoblasts detected by RT-coupled 5’ nuclease assay. Psychopharmacology. 2004;177(1–2):178–84.

    Article  CAS  PubMed  Google Scholar 

  13. Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melén K, Julkunen I, Taskinen J. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry. 1995;34(13):4202–10.

    Article  CAS  PubMed  Google Scholar 

  14. Sampaio TF, Dos Santos EUD, de Lima GDC, Dos Anjos RSG, da Silva RC, Asano AGC, Asano NMJ, Crovella S, de Souza PRE. MAO-B and COMT genetic variations associated with levodopa treatment response in subjects with Parkinson’s disease. J Clin Pharmacol. 2018;58(7):920–6.

    Article  CAS  PubMed  Google Scholar 

  15. Muellner J, Gharrad I, Habert MO, Kas A, Martini JB, Cormier-Dequaire F, Tahiri K, Vidailhet M, Meier N, Brice A, Schuepbach M, Mallet A, Hartmann A, Corvol JC. Dopaminergic denervation severity depends on COMT Val158Met polymorphism in Parkinson’s disease. Parkinsonism Relat Disord. 2015;21(5):471–6.

    Article  PubMed  Google Scholar 

  16. Dos Santos EUD, da Silva IIFG, Asano AGC, Asano NMJ, De MascenaDiniz MM, de Souza PRE. Pharmacogenetic profile and the development of the dyskinesia induced by levodopa-therapy in Parkinson’s disease subjects: a population-based cohort study. Mol Biol Rep. 2020;47(11):8997–9004.

    Article  PubMed  Google Scholar 

  17. Watanabe M, Harada S, Nakamura T, Ohkoshi N, Yoshizawa K, Hayashi A, Shoji S. Association between catechol-O-methyltransferase gene polymorphisms and wearing-off and dyskinesia in Parkinson’s disease. Neuropsychobiology. 2003;48(4):190–3.

    Article  CAS  PubMed  Google Scholar 

  18. Ivanova SA, Alifirova VM, Pozhidaev IV, Freidin MB, Zhukova IA, Osmanova DZ, Zhukova NG, Mironova YA, Tiguntsev VV, Fedorenko OY, Bokhan NA, Wilffert B, Loonen AJM. Polymorphisms of catechol-O-methyl transferase (COMT) gene in vulnerability to levodopa-induced dyskinesia. J Pharm Pharm Sci. 2018;21(1):340–6.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao C, Wang Y, Zhang B, Yue Y, Zhang J. Genetic variations in catechol-O-methyltransferase gene are associated with levodopa response variability in Chinese patients with Parkinson’s disease. Sci Rep. 2020;10(1):9521.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Contin M, Martinelli P, Mochi M, Riva R, Albani F, Baruzzi A. Genetic polymorphism of catechol-O-methyltransferase and levodopa pharmacokinetic-pharmacodynamic pattern in patients with Parkinson’s disease. Mov Disord. 2005;20(6):734–9.

    Article  PubMed  Google Scholar 

  21. Torkaman-Boutorabi A, Shahidi GA, Choopani S, Rezvani M, Pourkosary K, Golkar M, Zarrindast MR. The catechol-O-methyltransferase and monoamine oxidase B polymorphisms and levodopa therapy in the Iranian patients with sporadic Parkinson’s disease. Acta Neurobiol Exp. 2012;72(3):272–82.

    Google Scholar 

  22. Hao H, Shao M, An J, Chen C, Feng X, Xie S, Gu Z, Chan P. Association of catechol-O-methyltransferase and monoamine oxidase B gene polymorphisms with motor complications in parkinson’s disease in a Chinese population. Parkinsonism Relat Disord. 2014;20(10):1041–5.

    Article  PubMed  Google Scholar 

  23. Cheshire P, Bertram K, Ling H, O’Sullivan SS, Halliday G, McLean C, Bras J, Foltynie T, Storey E, Williams DR. Influence of single nucleotide polymorphisms in COMT, MAO-A and BDNF genes on dyskinesias and levodopa use in Parkinson’s disease. Neurodegener Disord. 2013;13(1):24–8.

    Article  Google Scholar 

  24. Xiao Q, Qian Y, Liu J, Xu S, Yang X. Roles of functional catechol-O-methyl transferase genotypes in Chinese patients with Parkinson’s disease. Transl Neurodegener. 2017;6:11.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chi J, Ling Y, Jenkins R, Li F. Quantitation of levodopa and carbidopa in rat plasma by LC-MS/MS: the key role of ion-pairing reversed-phase chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1054:1–9.

    Article  CAS  PubMed  Google Scholar 

  26. Elbarbry F, Nguyen V, Mirka A, Zwickey H, Rosenbaum R. A new validated HPLC method for the determination of levodopa: application to study the impact of ketogenic diet on the pharmacokinetics of levodopa in Parkinson’s participants. Biomed Chromatogr. 2019;33(1): e4382.

    Article  PubMed  Google Scholar 

  27. Grandas F, Galiano ML, Tabernero C. Risk factors for levodopa-induceddyskinesiasin Parkinson’s disease. J Neurol. 1999;246:1127–33.

    Article  CAS  PubMed  Google Scholar 

  28. Schrag A, Quinn N. Dyskinesias and motor fluctuations in Parkinson’s disease. Brain. 2000;123:2297–305.

    Article  PubMed  Google Scholar 

  29. Zappia M, Annesi G, Nicoletti G, Arabia G, Annesi F, Messina D, et al. Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson’s disease: an exploratory study. Arch Neurol. 2005;62(4):601–5.

    Article  PubMed  Google Scholar 

  30. Fereshtehnejad SM, Zeighami Y, Dagher A, Postuma RB. Clinical criteria forsub-typing Parkinson’s disease: biomarkers and longitudinal progression. Brain. 2017;140:1959–76.

    Article  PubMed  Google Scholar 

  31. Reilly DK, Rivera-Calimlim L, Van Dyke D. Catechol-O-methyltransferase activity: a determinant of levodopa response. Clin Pharmacol Ther. 1980;2892:278–86.

    Article  Google Scholar 

  32. Weinshilboum RM, Otterness DM, Szumlanski CL. Methylation pharmacogenetics: catechol-O-methyltransferase, thiopurine methyl transferase, and histamine methyltransferase. Annu Rev Pharmacol Toxicol. 1999;39:19–52.

    Article  CAS  PubMed  Google Scholar 

  33. de Lau LML, Verbaan D, Marinus J, Heutink P, van Hilten JJ. Catechol-Omethyltransferase Val158Met and the risk of dyskinesias in Parkinson’s disease. Mov Disord. 2021;27:132–5.

    Article  Google Scholar 

  34. Rivera-Calimlim L, Reilly DK. Difference in erythrocytecatechol-O-methyltransferase activity between orientals and caucasian: difference in levodopa tolerance. Clin Pharmacol Ther. 1984;35:804–9.

    Article  CAS  PubMed  Google Scholar 

  35. Białecka M, Drozdzik M, Kłodowska-Duda G, et al. The effect of monoamine oxidase B(MAO-B) and catechol-O-methyltransferase (COMT) polymorphisms on levodopatherapy in subjects with sporadic Parkinson’s disease. Acta Neurol Scand. 2004;110(4):260–6.

    Article  PubMed  Google Scholar 

  36. Kalinderi K, Fidani L, Katsarou Z, Bostantjopoulou S. Pharmacological treatment and theprospect of pharmacogenetics in Parkinson’s disease. Int J Clin Pract. 2011;65:1289–94.

    Article  CAS  PubMed  Google Scholar 

  37. Corvol JC, Bonnet C, Charbonnier-Beaupel F, Bonnet AM, Fiévet MH, et al. The COMT Val158Met polymorphism affects the response to entacapone in Parkinson’s disease: a randomized crossover clinical trial. Ann Neurol. 2011;69(1):111–8.

    Article  CAS  PubMed  Google Scholar 

  38. Lee MS. COMT genotype and effectiveness of entacapone in subjects with fluctuating Parkinson’s disease. Neurology. 2002;58:564–7.

    Article  CAS  PubMed  Google Scholar 

  39. Yin Y, Liu Y, Xu M, Zhang X, Li C. Association of COMT rs4680 and MAO-B rs1799836 polymorphisms with levodopa-induced dyskinesia in Parkinson’s disease-a meta-analysis. Neurol Sci. 2021;42(10):4085–94.

    Article  PubMed  Google Scholar 

  40. Soraya GV, Ulhaq ZS, Shodry S, A’raafSirojanKusuma M, Herawangsa S, Sativa MO, et al. Polymorphisms of the dopamine metabolic and signaling pathways are associated with susceptibility to motor levodopa-induced complications (MLIC) in Parkinson’s disease: a systematic review and meta-analysis. Neurol Sci. 2022. https://doi.org/10.1007/s10072-021-05829-4.

    Article  PubMed  Google Scholar 

  41. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, et al. A silent polymorphism in the MDR1 gene changes substrate specificity. Science. 2007;315:525–8.

    Article  CAS  PubMed  Google Scholar 

  42. Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, Makarov SS, Maixner W, Diatchenko L. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science. 2006;314(5807):1930–3.

    Article  CAS  PubMed  Google Scholar 

  43. Monikaa B, Mateusza K, Gabrielab KD, Grzegorzb O, Eng-Kingc TDE, Drozdzik M. The association of functional catechol-O-methyltransferase haplotypes with risk of Parkinson’s disease, levodopa treatment response, and complications. Pharmacogenet Genomics. 2008;18(9):815–21.

    Article  Google Scholar 

Download references

Funding

No external or internal funding utilized to carry out the work.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived and designed by RMK, RB and VKK. The recruitment of subjects, extraction of DNA and genotyping were performed by TFSD, STF and HPLC analysis was performed by BS. The data analysis was performed by TFSD and VKK. The manuscript was drafted by TFSD and VKK. The manuscript was revised for the critical content by RMK and RB. The final version of the manuscript was approved by all the authors.

Corresponding author

Correspondence to Vijay Kumar Kutala.

Ethics declarations

Conflict of Interest

All the authors hereby declare no conflict of interest.

Consent to Participate

All the participants or their guardians gave consent to participate in the study.

Consent for Publication

All the authors have read the manuscript and agreed for the publication.

Ethical Approval

This study was approved by the Institutional Ethics Committee of Nizam’s Institute of Medical Sciences, Hyderabad (approval no. EC/NIMS/1895/2017).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatima, T.S., Fathima, S.T., Kandadai, R.M. et al. Association of Catechol-O-Methyltransferase Gene Polymorphisms and Haplotypes in the Levodopa-Induced Adverse Events in Subjects with Parkinson’s Disease. Ind J Clin Biochem 38, 262–274 (2023). https://doi.org/10.1007/s12291-022-01046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-022-01046-8

Keywords

Navigation