Skip to main content
Log in

Effect of Abutilon indicum (L) Extract on Adipogenesis, Lipolysis and Cholesterol Esterase in 3T3-L1 Adipocyte Cell Lines

  • Original Research Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Abutilon indicum (L) is an Indian traditional plant used for the treatment of diabetes and heart diseases. The present study is to evaluate the functional of A. indicum leaf extract as insulin like character to inhibit lipolysis and stimulates Adipogenesis activity. The ability of the A. indicum leaf extract in anti-obesity effect of Adipogenesis, lipolysis and cholesterol esterase functions can be predicted by using 3T3-L1 adipocyte cell lines. Substances were isolated from A. indicum leaves and the double filtered crude sample were used for Adipogenesis, lipolysis and cholesterol esterase activity using 3T3-L1 adipocytes at different concentrations. We used differential media-I, differential media-II and maintenance media (MM1) at concentrations of 20, 40, 60, 80, 100, 200 and 400 µg/mL respectively. In addition to the extract, there is a significance increase in glycerol release (p < 0.001) compared with crude and reference compounds. Cholesterol esterase activity predicts the IC50 = 27.11 µg/mL of orlistat positive control compare with IC50 = 8.158 µg/mL of crude extract. Based on the observation, A. indicum leaf extract can promotes lipolysis and differentiated adipocytes. It is potentially used as adjuvant in the treatment of Type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

Authors declare that all generated or analyzed data are included in the article.

References

  1. Kusminski CM, Bickel PE, Scherer PE. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov. 2016;15:639–60.

    Article  CAS  Google Scholar 

  2. Kang JG, Park CY. Anti-obesity drugs: a review about their effects and safety. Diabetes Metab J. 2012;36:13–25.

    Article  Google Scholar 

  3. Bae KH, Kim WK, Lee SC. Involvement of protein tyrosine phosphatases in adipogenesis: new anti-obesity targets. BMB Rep. 2012;45:700–6.

    Article  CAS  Google Scholar 

  4. Söhle J, Knott A, Holtzmann U, Siegner R, Grönniger E, Schepky A, Gallinat S, Wenck H, Stäb F, Winnefeld M. White tea extract induces lipolytic activity and inhibits adipogenesis in human subcutaneous (pre)-adipocytes. NutrMetab (Lond). 2009;6:20.

    Article  Google Scholar 

  5. DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care. 1992;15:318–68.

    Article  CAS  Google Scholar 

  6. Livingstone C, Dominiczak AF, Campbell IW, Gould GW. Insulin resistance, hypertension and the insulin-responsive glucose transporter, GLUT4. Clin Sci (Lond). 1995;89:109–16.

    Article  CAS  Google Scholar 

  7. Kang S, Lee M. Beiging modulates inflammatory adipogenesis in salt-treated and MEK6-transfected adipocytes. Cells. 2021;10(5):1106. https://doi.org/10.3390/cells10051106.

    Article  CAS  Google Scholar 

  8. Kavishankar GB, Lakshmidevi N, Murthy SM, Prakash HS, Niranjana SR. Diabetes and medicinal plants-a review. Int J Pharm Biomed Sci. 2011;2(3):65–80.

    Google Scholar 

  9. Santos RS, Frank AP, Fátima LA, Palmer BF, Öz OK, Clegg DJ. Activation of estrogen receptor alpha induces beiging of adipocytes. Mol Metab. 2018;18:51–9. https://doi.org/10.1016/j.molmet.2018.09.002.

    Article  CAS  Google Scholar 

  10. Kang S, Park KM, Sung KY, Yuan Y, Lim ST. Effect of resistance exercise on the lipolysis pathway in obese pre- and postmenopausal women. J Pers Med. 2021;11(9):874. https://doi.org/10.3390/jpm11090874.

    Article  Google Scholar 

  11. Yadav AK, Jang BC. Inhibition of lipid accumulation and cyclooxygenase-2 expression in differentiating 3T3-L1 preadipocytes by pazopanib, a multikinase inhibitor. Int J Mol Sci. 2021;22(9):4884. https://doi.org/10.3390/ijms22094884.

    Article  CAS  Google Scholar 

  12. Park YK, Obiang-Obounou BW, Lee KB, Choi JS, Jang BC. AZD1208, a pan-Pim kinase inhibitor, inhibits adipogenesis and induces lipolysis in 3T3-L1 adipocytes. J Cell Mol Med. 2018;22(4):2488–97. https://doi.org/10.1111/jcmm.13559.

    Article  CAS  Google Scholar 

  13. Watal G, Dhar P, Srivastava SK, Sharma B. Herbal medicine as an alternative medicine for treating diabetes: the global burden. Evid Based Complement Altern Med. 2014;2014: 596071. https://doi.org/10.1155/2014/596071.

    Article  Google Scholar 

  14. Chauhan P, Mahajan S, Kulshrestha A, et al. Bougainvillea spectabilis exhibits antihyperglycemic and antioxidant activities in experimental diabetes. J Evid Based Complement Altern Med. 2016;21(3):177–85. https://doi.org/10.1177/2156587215595152.

    Article  CAS  Google Scholar 

  15. Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome. Nature. 2001;414:821–7.

    Article  CAS  Google Scholar 

  16. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365:1415–28.

    Article  CAS  Google Scholar 

  17. Arif T, Sharma B, Gahlaut A, Kumar V, Dabur R. Anti-diabetic agents from medicinal plants: a review. Chem Biol Lett. 2014;1(1):1–3.

    Google Scholar 

  18. Ahmad J, Khan I. Antioxidant potential of Abutilon indicum (L.) Sw. J Plant Pathol Microb. 2012;3:124. https://doi.org/10.4172/2157-7471.1000124.

    Article  Google Scholar 

  19. Rajendran K, Balaji P, Basu MJ. Medicinal plants and their utilization by villagers in southern districts of Tamil Nadu. Indian J Tradit Knowl. 2008;7(3):417–20.

    Google Scholar 

  20. Pandikumar P, Chellappandian M, Mutheeswaran S, Ignacimuthu S. Consensus of local knowledge on medicinal plants among traditional healers in Mayiladumparai block of Theni District, Tamil Nadu. India J Ethnopharmacol. 2011;134:354–62.

    Article  CAS  Google Scholar 

  21. Sasikala RP, Meena KS. Identification of biological activities of Abutilon indicum fruit by in silico and in vitro approach. Karbala Int J Mod Sci. 2018;4(3):287–96.

    Article  Google Scholar 

  22. Gautam GK, Vidhyasagar G, Dwivedi SC, Dwivedi S. Anti-diabetic activity of aqueous and methanolic extract of Abutilon muticum. Int J Pharm Teach Pract. 2013;4(1):522–6.

    Google Scholar 

  23. Mohite MS, Shelar PA, Raje VN, Babar SJ, Sapkal RK. Review on pharmacological properties of Abutilon indicum. Asian J Pharm Res. 2012;2(4):156–60.

    Google Scholar 

  24. DSVGK K, Saranya KS, Vadlapudi V, Yarla NS. Evaluation of anti-inflammatory and anti-proliferative activity of Abutilon indicum L. plant ethanolic leaf extract on lung cancer cell line A549 for system network studies. J Cancer Sci Ther. 2014;6:195–201.

    Google Scholar 

  25. Shameela S, Shamshad S, Indira Priyadarsini A, Lakshmi Devi K. Evaluation of Boerhaaviadiffusa for hepatoprotective activity in experimental Wistar rats. Int J Pharm Biol Sci. 2015;5(1):115–22.

    Google Scholar 

  26. Abutilon Species. Secondary metabolites of medicinal plants. 2020; pp. 6–15.

  27. Kirtikar KR, Basu BD. Indian medicinal plants, Dehradun 1918; pp. 314–7.

  28. Nadkarni K, Nadkarni AK. Indian Materia Medica, vol. 1. Bombay: Popular Prakashan Pvt.; 1976. p. 799.

    Google Scholar 

  29. Damodaran B, Nagaraja P, Jain V, Wimalasiri MM, Sankolli GM, Kumar GV, Prabhu V. Phytochemical screening and evaluation of cytotoxic activity of Calotropis gigantea leaf extract on MCF7, HeLa, and A549 cancer cell lines. J Nat Sci Biol Med. 2019;10(2):131.

    Article  CAS  Google Scholar 

  30. Al-Muniri RM, Hossain MA. Evaluation of antioxidant and cytotoxic activities of different extracts of folk medicinal plant Hapllophyllumtuberculatum. Egypt J Basic Appl Sci. 2017;4(2):101–6.

    Article  Google Scholar 

  31. Björntorp P, Karlsson M, Pertoft H, Pettersson P, Sjöström L, Smith U. Isolation and characterization of cells from rat adipose tissue developing into adipocytes. J Lipid Res. 1978;19(3):316–24.

    Article  Google Scholar 

  32. Niemelä S, Miettinen S, Sarkanen JR, Ashammakhi N. Adipose tissue and adipocyte differentiation: molecular and cellular aspects and tissue engineering applications. Top Tissue Eng. 2008;4(1):26 ((Topics in Tissue Engineering, Vol. 4. Eds. N Ashammakhi, R Reis, & F Chiellini © 2008)).

    Google Scholar 

  33. Rai PK, Jaiswal D, Rai DK, Sharma B, Watal G. Effect of water extract of Trichosanthes dioica fruits in streptozotocin induced diabetic rats. Indian J Clin Biochem. 2008;23(4):387–90. https://doi.org/10.1007/s12291-008-0085-4.

    Article  Google Scholar 

  34. Jaiswal D, Rai PK, Mehta S, et al. Role of Moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pac J Trop Med. 2013;6(6):426–32. https://doi.org/10.1016/S1995-7645(13)60068-1.

    Article  CAS  Google Scholar 

  35. Shie PH, Yang CP, Huang GJ, Wang SY, Kuo YH. Sinensol-C Isolated from Spiranthes sinensis inhibits adipogenesis in 3T3-L1 cells through the regulation of adipogenic transcription factors and AMPK activation. Molecules. 2020;25(18):4204. https://doi.org/10.3390/molecules25184204.

    Article  CAS  Google Scholar 

  36. Je JY, Park JE, Seo Y, Han JS. HM-chromanone inhibits adipogenesis by regulating adipogenic transcription factors and AMPK in 3T3-L1 adipocytes. Eur J Pharmacol. 2021;892: 173689. https://doi.org/10.1016/j.ejphar.2020.173689.

    Article  CAS  Google Scholar 

  37. Otani T, Mizokami A, Kawakubo-Yasukochi T, Takeuchi H, Inai T, Hirata M. The roles of osteocalcin in lipid metabolism in adipose tissue and liver. Adv Biol Regul. 2020;78: 100752. https://doi.org/10.1016/j.jbior.2020.100752.

    Article  CAS  Google Scholar 

  38. Yasutake Y, Konishi K, Muramatsu S, et al. Bacterial triacylglycerol lipase is a potential cholesterol esterase: identification of a key determinant for sterol-binding specificity. Int J Biol Macromol. 2021;167:578–86. https://doi.org/10.1016/j.ijbiomac.2020.11.184.

    Article  CAS  Google Scholar 

  39. Li Z, Zheng M, Mo J, et al. Single-cell RNA sequencing of preadipocytes reveals the cell fate heterogeneity induced by melatonin. J Pineal Res. 2021;70(3): e12725. https://doi.org/10.1111/jpi.12725.

    Article  CAS  Google Scholar 

  40. Bayliak MM, Dmytriv TR, Melnychuk AV, Strilets NV, Storey KB, Lushchak VI. Chamomile as a potential remedy for obesity and metabolic syndrome. EXCLI J. 2021;20:1261–86. https://doi.org/10.17179/excli2021-4013.

    Article  Google Scholar 

  41. Hausman GJ, Poulos SP, Pringle TD, Azain MJ. The influence of thiazolidinediones on adipogenesis in vitro and in vivo: potential modifiers of intramuscular adipose tissue deposition in meat animals. J Anim Sci. 2008;86(suppl_14):E236–43.

    Article  CAS  Google Scholar 

  42. Akerblad P, Lind U, Liberg D, Bamberg K, Sigvardsson M. Early B-cell factor (O/E-1) is a promoter of adipogenesis and involved in control of genes important for terminal adipocyte differentiation. Mol Cell Biol. 2002;22(22):8015–25.

    Article  CAS  Google Scholar 

  43. Lillie RD, Ashburn LL. Super-saturated solutions of fat stains in dilute isopropanol for demonstration of acute fatty degenerations not shown by Herxheimer technique. Arch Pathol. 1943;36:432.

    Google Scholar 

  44. Chai JW, Lim SL, Kanthimathi MS, Kuppusamy UR. Gene regulation in β-sitosterol-mediated stimulation of adipogenesis, glucose uptake, and lipid mobilization in rat primary adipocytes. Genes Nutr. 2011;6(2):181–8.

    Article  CAS  Google Scholar 

  45. John S, Thangapandian S, Lazar P, Son M, Park C, Lee KW. New insights in the activation of human cholesterol esterase to design potent anti-cholesterol drugs. Mol Divers. 2014;18:119–31.

    Article  CAS  Google Scholar 

  46. Pietsch M, Gutschow M. Alternate substrate inhibition of cholesterol esterase by thieno [2,3-d] [1,3] oxazin-4-ones. J Biol Chem. 2002;277:24006–13.

    Article  CAS  Google Scholar 

  47. Large V, Arner P. Regulation of lipolysis in humans. Pathophysiological modulation in obesity, diabetes, and hyperlipidaemia. Diabetes Metab. 1998;24(5):409–18.

    CAS  Google Scholar 

  48. Sarjeant K, Stephens JM. Cold Spring Harbor Perspect Biol 2012;4:1485–95.

  49. Kim KH, Kim YH, Son JE, Lee JH, Kim S, Choe MS, Moon JH, Zhong J, Fu K, Lenglin F, Yoo JA. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Res. 2017;27(11):1309–26.

    Article  CAS  Google Scholar 

  50. Azhar Y, Parmar A, Miller CN, Samuels JS, Rayalam S. Phytochemicals as novel agents for the induction of browning in white adipose tissue. Nutr Metab. 2016;13(1):1–1.

    Article  Google Scholar 

  51. Zhang X, Li X, Fang H, Guo F, Li F, Chen A, Huang S. Flavonoids as inducers of white adipose tissue browning and thermogenesis: signalling pathways and molecular triggers. Nutr Metab. 2019;16(1):1–5.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Dr. V. Veeraraghavan, research guide for supporting overall design of the experiment. C. N. Prashantha and K. Gouthami have helped to compile the results and supported for statistical calculation. I also thank Dr. Renuka Srihari for providing the laboratory support to conduct analytical experiments to generate research data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Veeraraghavan.

Ethics declarations

Conflict of interest

Authors declares that he has no conflict of interest.

Ethical Approval and Consent to Participate

The overall research is not used animals and is only in vitro based study.

Consent for Publication

Authors stated that there is no informed consent in the article.

Human and Animal Rights

No Human cell are used only animals cell lines are use for the studies. Animal cell line are used Sigma Aldrich [ATCC-CL-173].

Research Resource Identifiers (RRID)

Product category: Animal cells

Organism: Mus musculus, mouse

Classification: Eukaryota, Animalia, Metazoa, Chordata, Vertebrata, Tetrapod

Cell type: fibroblast

Morphology: fibroblast Tissue Embryo

Applications 3D cell culture

Product format: Frozen Storage conditions Vapor phase of liquid nitrogen

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshminarayana, L., Veeraraghavan, V., Gouthami, K. et al. Effect of Abutilon indicum (L) Extract on Adipogenesis, Lipolysis and Cholesterol Esterase in 3T3-L1 Adipocyte Cell Lines. Ind J Clin Biochem 38, 22–32 (2023). https://doi.org/10.1007/s12291-022-01022-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-022-01022-2

Keywords

Navigation