Skip to main content

Advertisement

Log in

Therapeutic Targets in Telomerase and Telomere Biology of Cancers

  • Review Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Telomeres play an important role to conserve genomic integrity by protecting the ends of chromosomes in normal cells. Since, their progressive shortening during successive cell division which lead to chromosomal instability. Notably, telomere length is perpetuated by telomerase in large majority of cancers, thereby ensure indefinite cell proliferation-a hallmark of cancer-and this unique feature has provided telomerase as the preferred target for drug development in cancer therapeutics. Cancer cells have acquired the potential to have telomere length maintenance by telomerase activation- up-regulation of hTERT gene expression in tumor cells is synchronized by multiple genetic and epigenetic modification mechanisms viz hTERT structural variants, hTERT promoter mutation and epigenetic modifications through hTERT promoter methylation which have been implicated in various cancers initiation and progression. In view of these facts, strategies have been made to target the underlining molecular mechanisms involved in telomerase reactivation as well as of telomere structure with special reference to distortion of sheltrin proteins. This review is focussed on extensive understanding of telomere and telomerase biology. which will provide indispensable informations for enhancing the efficiency of rational anticancer drug design. However, there is also an urgent need for better understanding of cell signalling pathways for alternative lengthening of telomere which is present in telomerase negative cancer for therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  2. Martinez P, Blasco MA. Replicacating through telomeres; a means to an end. Trends Biochem Sci. 2015;40:504–15.

    Article  CAS  PubMed  Google Scholar 

  3. Shay JW, Wright WE, Werbin H. Defining the molecular mechanisms of human cells immorialization. Biochem Biophys Acta. 1991;107:1–7.

    Google Scholar 

  4. Greider CW, Blackburn EH. Identifiaction of a specific telomere terminal transferase activity in tetrahymena extract. Cell. 1985;42:405–13.

    Article  Google Scholar 

  5. Greider CE, Blackbum EH. A telomeric sequence in the RNA of tetrahymena telomerase required for telomere repeat synthesis. Nature. 1989;337(6205):331–7.

    Article  CAS  PubMed  Google Scholar 

  6. Morin GB. The human telomere terminal transferase enzyme is a ribonucleo protein that synthesize TTAGGG repeat. Cell. 1989;59(3):521–9.

    Article  CAS  PubMed  Google Scholar 

  7. Autezier C, Lue NF. The structure and function of telomerase reverse transcription. Annu Rev Biochem. 2006;75:493–517.

    Article  CAS  Google Scholar 

  8. Kollins K. The biogenesis and regulation of telomerase holoenzymes. Nat Rev Mol Cell Biol. 2006;7:484–94.

    Article  CAS  Google Scholar 

  9. Kollins K. Physiological assembly and activity of human telomerase complexes. Mech Ageing Dev. 2008;129:91–8.

    Article  CAS  Google Scholar 

  10. Jetal L. Reverse transcriptase motifs in the catalytic sublinst of telomerase. Science. 1997;276:561–7.

    Article  Google Scholar 

  11. Wyatt HD, West SC, Beattie TL. In TERT preting telomerae structure and function. Nucleic Acids Res. 2010;38:5609–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zaug AJ, Podell ER, Ccch TR. Mutation in TERT separates processivity from anchor-sites function. Nat Struct Mol Biol. 2008;15:870–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen JL, Blasco MA, Greider CW. Secondary structure of vertebrate telomerase RNA. Cell. 2000;100:503–14.

    Article  CAS  PubMed  Google Scholar 

  14. Jady BE, Bertrand E, Kiss T. Human telomerase RNA and box H/ACA scaRNAs share a common cajal body specific localization signals. J Cell Biol. 2004;164:647–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen JL, Greider CW. Telomerase RNA structure and function: implications for dyskeratosis congenital. Trenels Biochem Sci. 2004;29:183–92.

    Article  CAS  Google Scholar 

  16. Mitchell JR, Collins K. Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcription. Mol Cell. 2000;6:361–71.

    Article  CAS  PubMed  Google Scholar 

  17. Chen JL, Opperman KK, Greider CW. A critical stem loop structure in the CR4-domain of mammalian telomerase RNA. Nucleic Acids Res. 2002;30:592–2786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Egan ED, Collins K. Specificity and stochiometry of sub unit interactions telomerase holoenzyme assembled in vivo. Mol Cell Biol. 2010;30:2775–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tycowski KT, Shu MD, Kuloye A, Steitz JA. A conserved WD40 protein binds the cajal body localization signal of ScaRNP particles. Mol Cell. 2009;34:43–57.

    Article  CAS  Google Scholar 

  20. Blackburn EH. Structure and function of telomeres. Nature. 1991;350(6319):569–73.

    Article  CAS  PubMed  Google Scholar 

  21. Moyzis RK, Buckngham JM, Gram LS. A highly conserved repetitive DNA requence (TTA GGG) in present at the telomere of human chromosomes. Proc Natl Acad Sci USA. 1988;85:6622–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Lange T. How shelterin solves the telomere end protection problem. In: Cold Spring Harbor symposia on quantitative biology, vol. 75; 2010. p. 167–77.

  23. Zimmermann M, Kibe T, Kabir S, de Lange T. TRFI negotiates TTA GGG repeat-associatcd replication problems by recruiting the BLM helicase and the TPPI, POTI repressor of ATR signaling. Gene Dev. 2014;28(22):2477–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Denchi EL, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature. 2007;448:1068–71.

    Article  CAS  PubMed  Google Scholar 

  25. Van Ly D, Low RRJ, Frolich S, Bartolec TK, et al. Telomere loop dynamics in chromosome end protection. MoI Cell. 2018;71:510–25.

    Article  CAS  Google Scholar 

  26. Doksani Y, Wu JY, de Lange T, Zhuang X. Super resolution fluorescence imaging of telomeres reveals TRF2 dependent T-loop formation. Cell. 2013;155:345–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Van Steensel B, et al. Control of telomere length by the human telomere protein TRF1. Nature. 1997;385:740–3.

    Article  PubMed  Google Scholar 

  28. Smogorzewska A, et al. Control of human telomere length by TRF1 And TRF2. Mol Cell Biol. 2000;20:1659–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hockemyer D, et al. Recent expression of the telomeric complex in rodents; two distinct POT1 proteins protect mouse telomeres. Cell. 2006;126:63–7.

    Article  CAS  Google Scholar 

  30. Hockemyer D, et al. Telomere protection by mammalian POT11 requires interaction with TPP1. Nat Struct Mol Biol. 2007;14:754–61.

    Article  CAS  Google Scholar 

  31. Hsu HL, Gilley D, Galande SA, Hande MP, Allen B, Kim SH, Li GC, Campisi J, Kohwi-Shigematsu T, Chen DJ. Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev. 2000;14:2807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arat NO, Griffith JD. Human Rap1 interacts directly with telomeric DNA and regulates TRF2 localization at the telomere. J Biol Chem. 2012;287:41583–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dunham MA, Neumann AA, Fasching CL, ReddeI RL. Telomere maintenance by recombination in human cell. Nat Genet. 2000;26:447–50.

    Article  CAS  PubMed  Google Scholar 

  34. Cong YS, Wen J, Bacchotte S. The human telomere catalythe submit hTERT organization of the gene and characterization of the promoter. Hum MoI Genet. 1999;8:137–42.

    Article  CAS  Google Scholar 

  35. Xie H, Liu T, Wang N, et al. TERT promoter mutations and gene amplification:promoting TERT expression in Merkel cell carcinoma. Oncotarget. 2014;5(20):10048–57.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Moriarty T, Huard S, Dupuis S, Autexier C. Functional multimerization of human telomerase requires an RNA interaction domain in the N-terminus of the catalytic subunit. Mol Cell Biol. 2002;22:1253–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huard S, Moriarty TJ, Autexier C. The C terminus of the human telomerase reverse transcriptase is a determinant of enzyme processivity. Nucleic Acids Res. 2003;31:4059–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lue NF. A physical and functional constituent of telomerase anchor site. J Biol Chem. 2005;280:26586–91.

    Article  CAS  PubMed  Google Scholar 

  39. Moriarty TJ, Ward RJ, Taboski MA, Autexier C. An anchor site-type defect in human telomerase that disrupts telomere length maintenance and cellular immortalization. Mol Biol Cell. 2005;16:3152–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang N, Kjellin H, Sofiadis A, et al. Genetic and epigenetic background and protein expression profiles in relation to telomerase activation in medullary thyroid carcinoma. Oncotarget. 2016;7(16):21332–46.

    PubMed  PubMed Central  Google Scholar 

  41. Zhang ZY, Chan AK, Ding XJ, et al. TERT promoter mutation contribute to IDH mutations in predicting differential responses to adjuvant therapies in WHO grade II and III diffuse. Oncotarget. 2015;6(28):24871–83.

    PubMed  PubMed Central  Google Scholar 

  42. Nadedinger E, Hobmann K. Epigenetic regulation of telomere maintenance for therapeutic intervention in Gliomas. Genes. 2017;8:5.

    Google Scholar 

  43. Lee SR, Wong JM, Collins K. Human telomerase reverse transcriptase motifs required for elongation of a telomeric substrate. J Biol Chem. 2003;278:52531–6.

    Article  CAS  PubMed  Google Scholar 

  44. Colgin LM, Wilkinson C, Englezou A, Kilian A, Robinson MO, Reddel RR. The hTERT alpha splice variant is a dominant negative inhibitor of telomerase activity. Neophasia. 2000;2:426–32.

    CAS  Google Scholar 

  45. Horn S, Fg IA, Rach Konda PS, et al. TERT promoter mutations in familial and sporadic metanoma. Science. 2013;339:959–61.

    Article  CAS  PubMed  Google Scholar 

  46. Huang PW, Hods L, Xu MJ, Kyulov GV, Chin L, Garraway LA. Highly recurrent TERT promoter mutations in human melanoma. Science. 2013;339:957–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vinagre J, Almeida A, Polule H, Betesta R, Lyra J, et al. Frequency of TRET promoter mutations in human cancers. Nat Commun. 2013;4:2185.

    Article  CAS  PubMed  Google Scholar 

  48. Wang N, Liu T, Sofiadis A, et al. TERT promoter mutation as an early genetic event activating telomerase in follicular thyroid adenomal (FTA) and atypical FTA. Cancer. 2014;120:2965–75.

    Article  CAS  PubMed  Google Scholar 

  49. Kinde I, Mumari E, Faraj SF, et al. TERT promoter mutations occurs early in urolethelial neoplasia and are biomarkers of early disease recurrence in urine. Cancer Res. 2013;73:1–18.

    Article  CAS  Google Scholar 

  50. Shain AH, Yeh I, Kovalyshyn I, et al. The genetic evolution of melanoma from precursos lesions. N Eng J Med. 2015;373:1926–36.

    Article  CAS  Google Scholar 

  51. Pupolo H, Boaventura P, Vinagre J, et al. TERT promoter mutations in skin cancer: the effect of sun exposure and x-irradiation. J Invest Dermatol. 2014;134:2251–7.

    Article  CAS  Google Scholar 

  52. Liu Z, Wu Q, Shan Y, et al. Highly prevalent TERT promoter mutations in blood cancers and glioblastoma. Cell Cycle. 2013;12:1637–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chiba K, Lorbeer FK, Shain AH, et al. Mutations in the promoter of the telomerase gene TERT contribute to tumorigenesis by a two nstep mechanism. Science. 2017;357:1416–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nault JC, Mallet M, Pilati C, et al. High frequency of telomerase reverse transcriptase promoter somatic mutations in hepato cellular carcinoma and preneoplastic lesions. Nat Commun. 2013;4:2218.

    Article  CAS  PubMed  Google Scholar 

  55. Hosler GA, Davolie T, Mender I, et al. A primary melanoma and its asynchronous metastasis highlight the role of BRAF, CDK N2A and TERT. J Cutan Pathol. 2015;42:108–17.

    Article  PubMed  Google Scholar 

  56. Scott GA, Laughlin TS, Rothberg PG. Mutations of the TERT promoter are common in basel cell carcinoma and squamous cell carcinoma. Mod Pathol. 2014;2014(27):516–23.

    Article  CAS  Google Scholar 

  57. Arita H, Narita Y, Fukushima S, et al. Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total IP 19q loss. Acta Neuropathol. 2013;126:267–76.

    Article  CAS  PubMed  Google Scholar 

  58. McCLintock B. The fusion of broken ends of chromosomes following nuclear fusion. Proc Natl Acad Sci USA. 1942;28(11):458–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med. 1997;3:1271–4.

    Article  CAS  PubMed  Google Scholar 

  60. Ishikawa F. Regulation mechanisms of mammalian telomerase: a review. Biochem (Mosc). 1997;62(11):1332–7.

    CAS  Google Scholar 

  61. Bechter OE, Zou Y, Walker W, Wright WE, Shay JW. Telomeric recombination in mismatch repair deficient human colon cancer cells after telomerase inhibition. Cancer Res. 2004;64:3444–51.

    Article  CAS  PubMed  Google Scholar 

  62. Yeager TR, Neumann AA, Englezou A, Huschtscha LI, Noble JR, Reddel RR. Telomerase negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res. 1999;59:4175–9.

    CAS  PubMed  Google Scholar 

  63. Muntoni A, Neumann AA, Hills M, Reddel RR. Telomere elongation involves intra-molecular DNA replication in cells utilizing alternative lengthening of telomeres. Hum Mol Genet. 2009;18:1017–27.

    Article  CAS  PubMed  Google Scholar 

  64. Henson JD, Neumann AA, Yeager TR, Reddel RR. Alternative lengthening of telomeres in mammalian cells. Oncogene. 2002;21:598–610.

    Article  CAS  PubMed  Google Scholar 

  65. Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C, et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science. 2011;333:425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kumar A, Kumari N, Rai A, Aingh SK, Kakkar N, Prasad R. Expression and clinical significance of compass family of histone methyltransferuses in clear cell renal cell carcinoma. Gene. 2018;674:31–6.

    Article  CAS  PubMed  Google Scholar 

  67. Garcia-Cao M, O’Sullivan R, Peters AH, Jenuwein T, Blasco MA. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet. 2004;36:94–9.

    Article  CAS  PubMed  Google Scholar 

  68. Beattie TL, Zhou W, Robinson MO, Harrington L. Functional multimerization of the human telomerase reverse transcriptase. Mol Cell Biol. 2001;21:6151–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature. 2008;452:492–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Benetti R, Garcia-Cao M, Blasco MA. Telomere length regulates the epigenetic status of mammalian telomeres and sub telomeres. Nat Genet. 2007;39:243–50.

    Article  CAS  PubMed  Google Scholar 

  71. Schoeftner S, Blasco MA. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol. 2008;10:228–36.

    Article  CAS  PubMed  Google Scholar 

  72. Luke B, Lingner J. TERRA: telomeric repeat-containing RNA. EMBO J. 2009;28:2503–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dong X, Liu A, Zer C, et al. siRNA inhibition of telomerase enhances the anti-cancer effect of doxorubicin breast cancer cells. BMC Cancer. 2009;9:133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Arnoult N, Van Beneden A, Decottignies A. Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1a. Nat Struct Mol Biol. 2012;19:948–56.

    Article  CAS  PubMed  Google Scholar 

  75. Herman JG, Baylin SR. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349:2042–54.

    Article  CAS  PubMed  Google Scholar 

  76. Bartett TE, Zaikin A, Othede SC, West J, et al. Corruption of the Intra gene DNA methylation architecture is a hallmark of cancer. PLOS One. 2013;8:68285.

    Article  CAS  Google Scholar 

  77. Xu D, Popv N, Hou M, Wang Q, Bjor Kholm M, Gruber A, Menkel AR, Menkel AR, Henrikson M. Switch from Myc/Max binding and decrease in histone acetylation at the telomerase reverse transcriptase proneoter during differentiation of HL60 cells. Proc Natt Acad Sci USA. 2001;98:3826–31.

    Article  CAS  Google Scholar 

  78. Hou M, Wang X, Popov N, Zhang A, Zhoo X, Zhou R, Zetterberg A, Björkholm M, Henriksson M. The histone deacetylase inhibitor tri chostatin A derepresses the telomerase reverse transcriptase (hTERT) gene in human cells. Exp cell Res. 2002;274:25–34.

    Article  CAS  PubMed  Google Scholar 

  79. Lewis KA, Jollefsbol TO. Regulation of the telomerase reverse transcriptase subunit through epigenetic mechanism. Front Genet. 2016;7:83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pal D, Dharma U, Singh SK, Kakkar N, Prasad R. Inhibition of hTERT expression by MAP kinase inhibitor induces cell death in renal cell carcinoma. Urol Oncol. 2017;35:401–8.

    Article  CAS  PubMed  Google Scholar 

  81. Kumar A, Kumari A, Sharma U, Ram S, Singh SK, Kakkar N, Kaushal K, Prasad R. Reduction in H3K4 me patterns due to aberrant expression of methyltransferases and demethylases in renal cell carcinoma prognostic and therapeutic implications. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-44733-Y.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Jafri MA, Ansari SA, Alqahtani MH, Shay JW. Roles of telomeres and telomerase in cancer, and advances in telomerase target therapies. Genome Med. 2016;8(1):69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ruden M, Puri N. Novel anticancer therapeutics targeting telomerase. Cancer Treat Rev. 2013;39:444–56.

    Article  CAS  PubMed  Google Scholar 

  84. Smogorzewska A, et al. Control of human telomere length by TRF1 AND TRF2. Cell Biol. 2000;20:1659–68.

    CAS  Google Scholar 

  85. Pal D, Sharma U, Khajuria R, Singh SK, Prasad R. Augmented telomerase actively reduced telomere length and the presence of alternative lengthening of telomere in renal cell carcinoma. Gene. 2015;562:145–51.

    Article  CAS  PubMed  Google Scholar 

  86. Bilsland AE, Cairney CJ, Nicol KW. Targeting the telomere and shelterin complex for cancer therapy current views and future perspectives. J Cell Med. 2011;15:79–186.

    Google Scholar 

  87. García-Beccaria M, Martínez P, Méndez-Pertuz M, Martínez S, Blanco-Aparicio C, Cañamero M, Mulero F, Ambrogio C, Flores JM, Megias D, Barbacid M. Therapeutic inhibition of TRF1 impairs the growth of p53-deficient K-RasG12V-induced lung cancer by induction of telomeric DNA damage. Cells. 2019;8(2):pii: E186. https://doi.org/10.3390/cells8020186.

    Article  CAS  Google Scholar 

  88. Yang Q, Zheng YL, Harris CC. POT1 and TRF2 cooperate to maintain telomeric integrity. Mol Cell Biol. 2005;25(3):1070–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Blasco M. Telomere length, stem cells and aging. Nat Chem Biol. 2007;3:640–9.

    Article  CAS  PubMed  Google Scholar 

  90. De Lange T. How Shelterin: the protein complex that shapes and safeguards human telomeres. Gene Dev. 2005;19(18):2100–10.

    Article  CAS  PubMed  Google Scholar 

  91. Kim SH, Davalos AR, Heo SJ, et al. Telomere dysfunction and cell survival: roles for distinct TIN2-containing complexes. J Cell Biol. 2008;181:447–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu C, Zhou B, Geng Y, Tam DY, Feng R, Miao H, Xu N, Shi X, You Y, Hong Y, Tang BZ. A chair-type G-quadruplex structure formed by a human telomeric variant DNA in K+ solution. Chem Sci. 2018;10(1):218–26.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Pellestor F, Paulasova P. The peptide nucleic acids (PNAs), powerful tools for molecular genetics and cytogenetics. Eur J Hum Genet. 2004;12(9):694–700.

    Article  CAS  PubMed  Google Scholar 

  94. Incles CM, Schultes CM, Kempski H, et al. A G-quadruplex telomere targeting agent produces p16-associated senescence and chromosomal fusions in human prostate cancer cells. Mol Cancer Ther. 2004;3:1201–6.

    CAS  PubMed  Google Scholar 

  95. Salvati E, Leonetti C, Rizzo A, Scarsella M, Mottolese M, Galati R, Sperduti I, Stevens MF, D’Incalci M, Blasco M, Chiorino G, Bauwens S, Horard B, Gilson E, Stoppacciaro A, Zupi G, Biroccio A.

  96. Tauchi T, Shin-ya K, Sashida G, et al. Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: in vitro and in vivo studies in acute leukemia. Oncogene. 2006;25:5719–25.

    Article  CAS  PubMed  Google Scholar 

  97. Vonderheide RH, Hahn WC, Schultze JL, Nadler LM. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity. 1999;10:673–9.

    Article  CAS  PubMed  Google Scholar 

  98. Lev A, Denkberg G, Cohen CJ, Tzukerman M, Skorecki KL, Chames P, et al. Isolation and characterization of human recombinant antibodie endowed with the antigen-specific, major histocompatibility complexrestricted specificity of T cells directed toward the widely expressed tumor T-cell epitopes of the telomerase catalytic subunit. Cancer Res. 2002;62:3184–94.

    CAS  PubMed  Google Scholar 

  99. Vonderheide RH. Telomerase as a universal tumor-associated antigen for cancer immunotherapy. Oncogene. 2002;21:674–9.

    Article  CAS  PubMed  Google Scholar 

  100. Vonderheide RH. Prospects and challenges of building a cancer vaccine targeting telomerase. Biochimie. 2008;90:173–80.

    Article  CAS  PubMed  Google Scholar 

  101. Kyte JA. Cancer vaccination with telomerase peptide. Expert Opin Investig Drugs. 2009;18:687–94.

    Article  CAS  PubMed  Google Scholar 

  102. Su Z, Dannull J, Yang BK, Dahm P, Coleman D, Yancey D, et al. Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J Immunol. 2005;174:3798–807.

    Article  CAS  PubMed  Google Scholar 

  103. Jackson SR, Zhu CH, Paulson V, Watkins L, Dikmen ZG, Gryaznov SM, et al. Antiadhesive effects of GRN163L—an oligonucleotide N3′ → P5′ thiophosphoramidate targeting telomerase. Cancer Res. 2007;67:1121–9.

    Article  CAS  PubMed  Google Scholar 

  104. Crooke S. Molecular mechanisms of action of antisense drugs. Biochim Biophys Acta. 1999;1489:31–44.

    Article  CAS  PubMed  Google Scholar 

  105. Phatak P, Cookson JC, Dai F, Smith V, Gartenhaus RB, Stevens MF, et al. Telomere uncapping by the G-quadruplex ligand RHPS4 inhibits clonogenic tumour cell growth in vitro and in vivo consistent with a cancer stem cell targeting mechanism. Br J Cancer. 2007;96:1223–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Burger AM. Highlights in experimental therapeutics. Cancer Lett. 2007;245:11–21.

    Article  CAS  PubMed  Google Scholar 

  107. Cunningham AP, Love WK, Zhang RW, et al. Telomerase inhibition in cancer therapeutics: molecular-based approaches. Curr Med Chem. 2006;13:2875–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Harley CB. Telomerase and cancer therapeutics. Nat Rev Cancer. 2008;8:167–79.

    Article  CAS  PubMed  Google Scholar 

  109. Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR. Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans”. Front Microbiol. 2018;2018:1441. https://doi.org/10.3389/fmicb.2018.01441.

    Article  Google Scholar 

  110. Kraemer K, Fuessel S, Meye A. Telomerase inhibition by synthetic nucleic acids and chemo sensitization in human bladder cancer cell lines. Methods Mol Biol. 2007;405:97–112.

    Article  Google Scholar 

  111. Agrawal N, Dasaradhi P, Mohmmed A, et al. RNA interference: biology, mechanism, and application. Microbiol Mol Rev. 2003;67:657–85.

    Article  CAS  Google Scholar 

  112. Lai S, Andrews L, Tollefsbol T. hTERT knockdown in human embryonic kidney cells using double-stranded RNA. Methods Mol Biol. 2007;405:23–9.

    Article  CAS  PubMed  Google Scholar 

  113. Lai S, Andrews L, Tollefsbol T. RNA interference using a plasmid construct expressing short-hairpin RNA. Methods Mol Biol. 2007;405:31–7.

    Article  CAS  PubMed  Google Scholar 

  114. Chen Li Y, Tollefsbol TO. Strategies targeting telomerase inhibition. Mol Biotechnol. 2009;41:194–9.

    Article  CAS  Google Scholar 

  115. Xu D, Dwyer J, Li H, Duan W, Liu JP. Ets2 maintains hTERT gene expression and breast cancer cell proliferation by interacting with c-Myc. J Biol Chem. 2008;283:23567–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Prasad R, Pal D, Sharma U, Singh SK, Kakkar N. Inhibition of hTERT expression by MAP kinase inhibitor induces cell death in renal cell carcinoma. Urol Oncol. 2017;35(6):401–8. https://doi.org/10.1016/j.urolonc.2017.01.019. Epub 2017 Feb 16.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Prasad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, R., Pal, D. & Mohammad, W. Therapeutic Targets in Telomerase and Telomere Biology of Cancers. Ind J Clin Biochem 35, 135–146 (2020). https://doi.org/10.1007/s12291-020-00876-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-020-00876-8

Keywords

Navigation