Skip to main content
Log in

Single point incremental forming: state-of-the-art and prospects

  • Review
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Incremental sheet metal forming in general and Single Point Incremental Forming (SPIF) specifically have gone through a period of intensive development with growing attention from research institutes worldwide. The result of these efforts is significant progress in the understanding of the underlying forming mechanisms and opportunities as well as limitations associated with this category of flexible forming processes. Furthermore, creative process design efforts have enhanced the process capabilities and process planning methods. Also, simulation capabilities have evolved substantially. This review paper aims to provide an overview of the body of knowledge with respect to Single Point Incremental Forming. Without claiming to be exhaustive, each section aims for an up-to-date state-of-the-art review with corresponding conclusions on scientific progress and outlook on expected further developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Adapted from [29, 38]

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

adapted from [88]

Fig. 18

adapted from [100]

Fig. 19

Adapted from [103]

Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

(Source Mechanical Engineering department, KU Leuven)

Fig. 29

(Source Mechanical Engineering department, KU Leuven)

Fig. 30

(Source Mechanical Engineering department, KU Leuven)

Fig. 31
Fig. 32

(Source: Department of Mechanical and Materials Engineering, Queen’s University)

Fig. 33

(Source: Department of Mechanical and Materials Engineering, Queen’s University)

Fig. 34

(Source: Department of Mechanical and Materials Engineering, Queen’s University)

Similar content being viewed by others

References

  1. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol 54(2):88–114. https://doi.org/10.1016/S0007-8506(07)60021-3

    Article  Google Scholar 

  2. Adams D, Jeswiet J (2014) Design rules and applications of single-point incremental forming. Proc Inst Mech Eng B J Eng Manuf 229(5):754–760

    Article  Google Scholar 

  3. Leszak E (1967) Apparatus and process for incremental dieless forming. Patent US3342051A1, published 1967–09-19

  4. Reddy NV, Lingam R, Cao J (2015) Incremental metal forming process in manufacturing in handbook of manufacturing engineering and technology. Springer-Verlag, London

    Google Scholar 

  5. Aerens R, Eyckens P, Van Bael A, Duflou JR (2010) Force prediction for single point incremental forming deduced from experimental and FEM observations. Int J Adv Manuf Technol 46(9–12):969–982. https://doi.org/10.1007/s00170-009-2160-2

    Article  Google Scholar 

  6. Marabuto SR, Afonso D, Ferreira JAF, Melo FQ, Martins MABE, de Sousa RJA (2011) Finding the best machine for SPIF operations - a brief discussion. Key Eng Mater 473:861–868. https://doi.org/10.4028/www.scientific.net/KEM.473.861

    Article  Google Scholar 

  7. Ambrogio G, Gagliardi F, Filice L (2013) On the high-speed single point incremental forming of titanium alloys. CIRP Ann 62(1):243–246. https://doi.org/10.1016/j.cirp.2013.03.053

    Article  Google Scholar 

  8. Vanhove H, Mohammadi A, Guo Y, Duflou JR (2014) High-speed single point incremental forming of an automotive aluminium alloy. Key Eng Mater 622-623:433–439. https://doi.org/10.4028/www.scientific.net/KEM.622-623.433

    Article  Google Scholar 

  9. Pereira Bastos RN, Alves de Sousa RJ, Fernandes Ferreira JA (2015) Enhancing time efficiency on single point incremental forming processes. Int J Mater Form 9(5):653–662. https://doi.org/10.1007/s12289-015-1251-x

    Article  Google Scholar 

  10. Meier H, Dewald O, Zhang J (2005) Development of a robot-based sheet metal forming process. Steel Res Int 76(2–3):167–170. https://doi.org/10.1002/srin.200505990

    Article  Google Scholar 

  11. Verbert J, Aerens R, Vanhove H, Aertbeliën E, Duflou J (2009) Obtainable accuracies and compensation strategies for robot supported SPIF. Key Eng Mater 410–411:679–687

    Article  Google Scholar 

  12. Alves de Sousa RJ, Ferreira JAF, Sá de Farias JB, Torrão JND, Afonso DG, Martins MABE (2014) SPIF-A: on the development of a new concept of incremental forming machine. Struct Eng Mech 49(5):645–660. 10.12989/sem.2014.49.5.645

    Article  Google Scholar 

  13. Johnson CF, Kiridena VS, Ren F, Xia ZC (2012) System and method for incrementally forming a workpiece, US Patent US8322176

  14. Meier H, Buff B, Laurischka t R, Smukala V (2009) Increasing the part accuracy in dieless robot-based incremental sheet metal forming. CIRP Ann Manuf Technol 58(1):233–238

    Article  Google Scholar 

  15. Paniti I (2014) A novel, single-robot based two sided incremental sheet forming system, ISR/ROBOTIK. 41st International Symposium on Robotics, Proceedings of VDE

  16. Ziran X, Gao L, Hussain G, Cui Z (2010) The performance of flat end and hemispherical end tools in single-point incremental forming. Int J Adv Manuf Technol 46(9-12):1113–1118. https://doi.org/10.1007/s00170-009-2179-4

    Article  Google Scholar 

  17. Bhattacharya A, Maneesh K, Venkata Reddy N, Cao J (2011) Formability and surface finish studies in single point incremental forming. J Manuf Sci Eng 133:6 061020

    Article  Google Scholar 

  18. Eyckens P, Van Bael A, Aerens R, Duflou J, Van Houtte P (2008) Small-scale finite element modelling of the plastic deformation zone in the incremental forming process. Int J Mater Form 1:1159

    Article  Google Scholar 

  19. Lu B, Fang Y, Xu DK, Chen J, Ou H, Moser NH, Cao J (2014) Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool. Int J Mach Tools Manuf 85:14–29. https://doi.org/10.1016/j.ijmachtools.2014.04.007

    Article  Google Scholar 

  20. Azevedo NG, Farias JS, Bastos RP, Teixeira P, Davim JP, De Sousa RJA (2015) Lubrication aspects during single point incremental forming for steel and aluminum materials. Int J Precis Eng Manuf 16:589. https://doi.org/10.1007/s12541-015-0079-0

    Article  Google Scholar 

  21. Hussain G, Gao L, Hayat N, Cui Z, Pang YC, Dar NU (2008) Tool and lubrication for negative incremental forming of a commercially pure titanium sheet. Int J Mater Prod Technol 203(1–3):193–201. https://doi.org/10.1016/j.jmatprotec.2007.10.043

    Article  Google Scholar 

  22. Duflou JR, Callebaut B, Verbert J, De Baerdemaeker H (2007) Laser assisted incremental forming: formability and accuracy improvement. CIRP Ann Manuf Technol 56(1):273–276. https://doi.org/10.1016/j.cirp.2007.05.063

    Article  Google Scholar 

  23. Bouffioux C, Henrard C, Gu J, Duflou J, Habraken A (2007) Development of an inverse method for identification of materials parameters in the single point incremental sheet forming process. Proc. of the IDDRG 2007 International Conference

  24. Emmens WC, Sebastiani G, van den Boogaard AH (2010) The technology of incremental sheet forming - a brief review of the history. J Mater Process Technol 210(8):981–997. https://doi.org/10.1016/j.jmatprotec.2010.02.014

    Article  Google Scholar 

  25. Filice L, Fratini L, Micari F (2002) Analysis of material formability in incremental forming. CIRP Annals-Manufacturing Technology 51(1):199–202. https://doi.org/10.1016/S0007-8506(07)61499-1

    Article  Google Scholar 

  26. Emmens WC, van den Boogaard AH (2009) An overview of stabilizing deformation mechanisms in incremental sheet forming. J Mater Process Technol 209(8):3688–3695. https://doi.org/10.1016/j.jmatprotec.2008.10.003

    Article  Google Scholar 

  27. Jackson K, Allwood JM (2009) The mechanics of incremental sheet forming. J Mater Process Technol 209(3):1158–1174. https://doi.org/10.1016/j.jmatprotec.2008.03.025

    Article  Google Scholar 

  28. Malhotra R, Xue L, Belytschko T, Cao J (2012) Mechanics of fracture in single point incremental forming. J Mater Process Technol 212(7):1573–1590. https://doi.org/10.1016/j.jmatprotec.2012.02.021

    Article  Google Scholar 

  29. Silva MB, Nielsen PS, Bay N, Martins PAF (2011) Failure mechanisms in single-point incremental forming of metals. Int J Adv Manuf Technol 56(9–12):893–903. https://doi.org/10.1007/s00170-011-3254-1

    Article  Google Scholar 

  30. Eyckens P, He S, Van Bael A, Van Houtte P, Duflou J (2007) Forming limit predictions for the serrated strain paths in single point incremental sheet forming. AIP Conference Proceedings, Aip 908:141–146

    Article  Google Scholar 

  31. Silva MB, Skjoedt M, Bay N, Martins PAF (2009) Revisiting single-point incremental forming and formability/failure diagrams by means of finite elements and experimentation. J Strain Anal Eng Des 44(4):221–234. https://doi.org/10.1243/03093247JSA522

    Article  Google Scholar 

  32. Hussain G, Gao L, Hayat N, Ziran X (2009) A new formability indicator in single point incremental forming. J Mater Process Technol 209(9):4237–4242. https://doi.org/10.1016/j.jmatprotec.2008.11.024

    Article  Google Scholar 

  33. Allwood J, Shouler D, Tekkaya A (2007) The increased forming limits of incremental sheet forming processes. Key Eng Mater 344:621–628. https://doi.org/10.4028/www.scientific.net/KEM.344.621

    Article  Google Scholar 

  34. Hirt G, Ames J, Bambach M, Kopp R (2004) Forming strategies and process modelling for CNC incremental sheet forming. CIRP Ann Manuf Technol 53(1):203–206. https://doi.org/10.1016/S0007-8506(07)60679-9

    Article  Google Scholar 

  35. Martins PAF, Bay N, Skjoedt M, Silva MB (2008) Theory of single point incremental forming. CIRP Ann Manuf Technol 57(1):247–252. https://doi.org/10.1016/j.cirp.2008.03.047

    Article  Google Scholar 

  36. Smith J, Malhotra R, Liu WK, Cao J (2013) Deformation mechanics in single-point and accumulative double-sided incremental forming. Int J Adv Manuf Technol 69(5–8):1185–1201. https://doi.org/10.1007/s00170-013-5053-3

    Article  Google Scholar 

  37. Montanari L, Cristino VA, Silva MB, Martins PAF (2013) A new approach for deformation history of material elements in hole-flanging produced by single point incremental forming. Int J Adv Manuf Technol 69(5–8):1175–1183. https://doi.org/10.1007/s00170-013-5117-4

    Article  Google Scholar 

  38. Silva MB, Skjoedt M, Atkins AG, Bay N, Martins PAF (2008) Single-point incremental forming and formability-failure diagrams. J Strain Anal Eng Des 43(1):15–35. https://doi.org/10.1243/03093247JSA340

    Article  Google Scholar 

  39. Behera AK, Lauwers B, Duflou J (2013) Tool path generation for single point incremental forming using intelligent sequencing and multi-step mesh morphing techniques. Key Eng Mater 554–557:1408–1418

    Article  Google Scholar 

  40. Behera AK, Verbert J, Lauwers B, Duflou JR (2013) Tool path compensation strategies for single point incremental sheet forming using multivariate adaptive regression splines. Comput Des 45(3):575–590

    Google Scholar 

  41. Beltran M, Malhotra R, Nelson AJ, Bhattacharya A, Reddy NV, Cao J (2013) Experimental study of failure modes and scaling effects in micro-incremental forming. ASME Journal of Micro- and Nano-Manufacturing 3:031005–031001

    Article  Google Scholar 

  42. Sekine T, Obikawa T (2010) Single point micro incremental forming of miniature Shell structures. Journal of Advanced Mechanical Design, Systems, and Manufacturing 4(2):543–557. https://doi.org/10.1299/jamdsm.4.543

    Article  Google Scholar 

  43. Donachie MJ (2000) Titanium: a technical guide, ASM International

  44. Avedesian MM, Baker H (1999) ASM specialty handbook: magnesium and magnesium alloys (ASM international)

  45. Shi X, Gao L, Khalatbari H, Xu Y, Wang H, Jin L. (2013) Electric hot incremental forming of lowcarbon steel sheet: accuracy improvement. Int J Adv Manuf Technol 68(1–4):241–247

    Article  Google Scholar 

  46. Welsch G, Boyer R, Collings EW (1993) Materials properties handbook: Titanium Alloys. ASMInternational, Materials Park, OH

  47. Kim SW, Lee YS, Kang SH, Lee JH (2007) Incremental forming of mg alloy sheet at elevated temperatures. J Mech Sci Technol 21(10):1518–1522. https://doi.org/10.1007/BF03177368

    Article  Google Scholar 

  48. Palumbo G, Brandizzi M (2012) Experimental investigations on the single point incremental forming of a titanium alloy component combining static heating with high tool rotation speed. Mater Des 40(0):43–51

    Article  Google Scholar 

  49. Duflou J, Callebaut B, Verbert J, De Baerdemaeker H (2008) Improved SPIF performance through dynamic local heating. Int J Mach Tools Manuf 48(5):543–549. https://doi.org/10.1016/j.ijmachtools.2007.08.010

    Article  Google Scholar 

  50. Mohammadi A, Vanhove H, Van Bael A, Duflou JR (2016) Towards accuracy improvement in single point incremental forming of shallow parts formed under laser assisted conditions. Int J Mater Form 9(3):339–351. https://doi.org/10.1007/s12289-014-1203-x ISSN 1960-6206

    Article  Google Scholar 

  51. Mohammadi A, Vanhove H, Van Bael A, Seefeldt M, Duflou JR (2016) Effect of laser transformation hardening on the accuracy of SPIF formed parts. Journal of Manufacturing Science and Engineering (ASME) 139(1):011007–011007-12. https://doi.org/10.1115/1.4033926

    Article  Google Scholar 

  52. Göttmann A, Diettrich J, Bergweiler G, Bambach M, Hirt G, Loosen P, Poprawe R (2011) Laser-assisted asymmetric incremental sheet forming of titanium sheet metal parts. Prod Eng Res Devel 5(3):263–271. https://doi.org/10.1007/s11740-011-0299-9

    Article  Google Scholar 

  53. Ghiotti A, Bruschi S (2010) A novel experimental set-up for warm incremental forming of AZ31B magnesium alloy sheets. Steel Res Int 81:950–954

    Google Scholar 

  54. Fan G, Gao L, Hussain G, Wu Z (2008) Electric hot incremental forming: a novel technique. Int J Mach Tools Manuf 48(15):1688–1692. https://doi.org/10.1016/j.ijmachtools.2008.07.010

    Article  Google Scholar 

  55. Ambrogio G, Filice L, Gagliardi F (2012) Formability of lightweight alloys by hot incremental sheet forming. Mater Des 34:501–508. https://doi.org/10.1016/j.matdes.2011.08.024

    Article  Google Scholar 

  56. Fan G, Sun F, Meng X, Gao L, Tong G (2010) Electric hot incremental forming of Ti-6Al-4V titanium sheet. Int J Adv Manuf Technol 49(9):941–947. https://doi.org/10.1007/s00170-009-2472-2

    Article  Google Scholar 

  57. Zhang Q, Xiao F, Guo H, Li C, Gao L, Guo X, Han W, Bondarev AB (2010) Warm negative incremental forming of magnesium alloy AZ31 Sheet: New lubricating method. J Mater Process Technol 210(2):323–329

    Article  Google Scholar 

  58. Ji YH, Park JJ (2008) Formability of magnesium AZ31 sheet in the incremental forming at warm temperature. J Mater Process Technol 201(1–3):354–358. https://doi.org/10.1016/j.jmatprotec.2007.11.206

    Article  Google Scholar 

  59. Ji YH, Park JJ (2008) Incremental forming of free surface with magnesium alloy AZ31 sheet at warm temperatures. Trans Nonferrous Metals Soc China 18, Supplement 1(0):165–169

    Article  Google Scholar 

  60. Ambrogio G, Filice L, Manco GL (2008) Warm incremental forming of magnesium alloy AZ31. CIRP Ann Manuf Technol 57(1):257–260. https://doi.org/10.1016/j.cirp.2008.03.066

    Article  Google Scholar 

  61. Galdos L, Argandoña ESD, Ulacia I, Arruebarrena G (2012) Warm incremental forming of magnesium alloys using hot fluid as heating media. Key Eng Mater 504–506:815–820

    Article  Google Scholar 

  62. Mohammadi A, Vanhove H, Weise D, Landgrebe D, Van Bael A, Duflou JR (2017) Influence of global forced-air warming on the bulge formation in shallow sloped SPIF parts. Procedia Engineering 183:149–154. https://doi.org/10.1016/j.proeng.2017.04.046

    Article  Google Scholar 

  63. Göttmann A, Bailly D, Bergweiler G, Bambach M, Stollenwerk J, Hirt G, Loosen P (2013) A novel approach for temperature control in ISF supported by laser and resistance heating. Int J Adv Manuf Technol 67(9–12):2195–2205. https://doi.org/10.1007/s00170-012-4640-z

    Article  Google Scholar 

  64. Salandro WA, Jones JJ, McNeal TA, Roth JT, Hong S-T, Smith MT (2010) Formability of al 5xxx sheet metals using pulsed current for various heat treatments. J Manuf Sci Eng 132(5):0151016. https://doi.org/10.1115/1.4002185

    Article  Google Scholar 

  65. Salandro W, Jones J, Bunget C, Mears L, Roth J (2015) Electrically assisted forming, modeling and control. Springer Series in Advanced Manufacturing

  66. Kinsey B, Cullen G, Jordan A, Mates S (2013) Investigation of electroplastic effect at high deformation rates for 304SS and Ti-6Al-4V. CIRP Ann 62(1):279–282. https://doi.org/10.1016/j.cirp.2013.03.058

    Article  Google Scholar 

  67. Magargee J, Morestin F, Cao J (2013) Characterization of flow stress for commercially pure titanium subjected to electrically-assisted deformation. ASME Journal of Engineering Materials and Technologies 135(4):041003. https://doi.org/10.1115/1.4024394

    Article  Google Scholar 

  68. Perkins TA, Kronenberger TJ, Roth JT (2007) Metallic forging using electrical flow as an alternative to warm/hot working. J Manuf Sci Eng 129(1):84–94. https://doi.org/10.1115/1.2386164

    Article  Google Scholar 

  69. Magargee J, Fan R, Cao J (2013) Analysis and observations of current density sensitivity and thermally activated mechanical behavior in electrically-assisted deformation. ASME J Manufacturing Science and Engineering 135:061022. https://doi.org/10.1115/1.4025882

    Article  Google Scholar 

  70. Adams D, Jeswiet J (2014) Single point incremental forming of 6061-T6 using electrically assisted forming methods. Proc Inst Mech Eng B J Eng Manuf 228(7):757–764. https://doi.org/10.1177/0954405413501670

    Article  Google Scholar 

  71. Hagan E, Jeswiet J (2003) A review of conventional and modern single-point sheet metal forming methods. Proc Inst Mech Eng B J Eng Manuf 217(2):213–225. https://doi.org/10.1243/095440503321148858

    Article  Google Scholar 

  72. Skjoedt M, Silva MB, Martins PAF, Bay N (2010) Strategies and limits in multi-stage single-point incremental forming. J Strain Anal Eng Des 45(1):33–44. https://doi.org/10.1243/03093247JSA574

    Article  Google Scholar 

  73. Skjoedt M, Bay N, Endelt B, Ingarao G (2008) Multi stage strategies for single point incremental forming of a cup. J Mater Form 1(1):1199–1202. https://doi.org/10.1007/s12289-008-0

    Article  Google Scholar 

  74. Duflou JR, Verbert J, Belkassem B, Gu J, Sol H, Henrard C, Habraken AM (2008) Process window enhancement for single point incremental forming through multi-step toolpaths. CIRP Ann Manuf Technol 57(1):253–256. https://doi.org/10.1016/j.cirp.2008.03.030

    Article  Google Scholar 

  75. Verbert J, Belkassem B, Henrard C, Habraken AM, Gu J, Sol H, Lauwers B, Duflou JR (2008) Multi-step Toolpath approach to overcome forming limitations in single point incremental forming. Int J Mater Form 1(1):1203–1206. https://doi.org/10.1007/s12289-008-0

    Article  Google Scholar 

  76. Liu Z, Daniel WJT, Li Y, Liu S, Meehan PA (2014) Multi-pass deformation design for incremental sheet forming: analytical modeling, finite element analysis and experimental validation. J Mater Process Technol 214(3):620–634. https://doi.org/10.1016/j.jmatprotec.2013.11.010

    Article  Google Scholar 

  77. Li J, Hu J, Pan J, Geng P (2011) Thickness distribution and design of a multi-stage process for sheet metal incremental forming. Int J Adv Manuf Technol 62(9–12):981–988

    Google Scholar 

  78. Malhotra R, Bhattacharya A, Kumar A, Reddy NV, Cao J (2011) A new methodology for multi-pass single point incremental forming with mixed toolpaths. CIRP Ann - Manuf Technol 60(1):323–326. https://doi.org/10.1016/j.cirp.2011.03.145

    Article  Google Scholar 

  79. Xu D, Malhotra R, Reddy NV, Chen J, Cao J (2012) Analytical prediction of stepped feature generation in multi-pass single point incremental forming. J Manuf Process 14(4):487–494. https://doi.org/10.1016/j.jmapro.2012.08.003

    Article  Google Scholar 

  80. Cao T, Lu B, Xu D, Zhang H, Chen J, Long H, Cao J, (2015) An efficient method for thickness prediction in multi-pass incremental sheet forming. Int J Adv Manuf Technol, 2015 77(1):469–483. https://doi.org/10.1007/s00170-014-6489-9

    Article  Google Scholar 

  81. Lingam R, Bansal A, Reddy NV (2015) Analytical prediction of formed geometry in multi-stage single point incremental forming. Int J Mater Form 9(3):395–404

    Article  Google Scholar 

  82. Vanhove H, Gu J, Sol H, Duflou JR (2011) Process window extension for incremental forming through optimal work plane rotation. Steel Res Int, Special edition ICTP 2011, 508–512

  83. Tanaka S, Hayakawa K, Nakamura T, (2011) Incremental sheet forming with direction control of path planes. Steel Research Int., Special edition ICTP 2011, 503–507

  84. Jeswiet J, Duflou JR, Szekeres A, Lefebvre P (2005) Custom manufacture of a solar cooker – a case study. Adv Mater Res 6–8:487–492. https://doi.org/10.4028/www.scientific.net/AMR.6-8.487

    Article  Google Scholar 

  85. Ambrogio G, Gagliardi F, Bruschi S, Filice L (2013) Robust design of incremental sheet forming by Taguchi’s method. Procedia CIRP 12:270–275. https://doi.org/10.1016/j.procir.2013.09.047

    Article  Google Scholar 

  86. Azaouzi M, Lebaal N (2012) Tool path optimization for single point incremental sheet forming using response surface method. Simul Model Pract Theory 24:49–58. https://doi.org/10.1016/j.simpat.2012.01.008

    Article  Google Scholar 

  87. Jeswiet J (2005) Asymmetric incremental sheet forming. Adv Mater Res 6–8:35–58

    Article  Google Scholar 

  88. Malhotra R, Reddy NV, Cao J (2010) Automatic 3D spiral Toolpath generation for single point incremental forming. J Manuf Sci Eng 132(6):061003. https://doi.org/10.1115/1.4002544

    Article  Google Scholar 

  89. Rauch M, Hascoet J-Y, Hamann J-C, Plenel Y (2009) Tool path programming optimization for incremental sheet forming applications. Comput Des 41(12):877–885

    Google Scholar 

  90. Duflou JR, Vanhove H, Verbert J, Gu J, Vasilakos I, Eyckens P (2010) Twist revisited: twist phenomena in single point incremental forming. CIRP Ann Manuf Technol 59(1):307–310. https://doi.org/10.1016/j.cirp.2010.03.018

    Article  Google Scholar 

  91. Hamilton K, Jeswiet J (2010) Single point incremental forming at high feed rates and rotational speeds: surface and structural consequences. CIRP Ann Manuf Technol 59(1):311–314. https://doi.org/10.1016/j.cirp.2010.03.016

    Article  Google Scholar 

  92. Ham M, Jeswiet J (2007) Forming limit curves in single point incremental forming. CIRP Ann Manuf Technol 56(1):277–280. https://doi.org/10.1016/j.cirp.2007.05.064

    Article  Google Scholar 

  93. Bahloul R, Arfa H, BelHadjSalah H (2014) A study on optimal design of process parameters in single point incremental forming of sheet metal by combining box–Behnken design of experiments, response surface methods and genetic algorithms. Int J Adv Manuf Technol 74(1–4):163–185. https://doi.org/10.1007/s00170-014-5975-4

    Article  Google Scholar 

  94. Desai BV, Desai KP, Raval HK (2014) Die-less rapid prototyping process: parametric investigations. Prog Mater Sci 6:666–673. https://doi.org/10.1016/j.mspro.2014.07.082

    Article  Google Scholar 

  95. Jeswiet J, Hagan E, Szekeres A (2002) Forming parameters for incremental forming of aluminium alloy sheet metal. Proc Inst Mech Eng B J Eng Manuf 216(10):1367–1371. https://doi.org/10.1243/095440502320405458

    Article  Google Scholar 

  96. León J, Salcedo D, Ciáurriz C, Luis CJ, Fuertes JP, Puertas I, Luri R (2013) Analysis of the influence of geometrical parameters on the mechanical properties of incremental sheet forming parts. Procedia Eng 63:445–453. https://doi.org/10.1016/j.proeng.2013.08.206

    Article  Google Scholar 

  97. Sarraji WKH, Hussain J, Ren W-X (2012) Experimental investigations on forming time in negative incremental sheet metal forming process. Mater Manuf Process 27(5):499–506. https://doi.org/10.1080/10426914.2011.585550

    Article  Google Scholar 

  98. Ambrogio G, Cozza V, Filice L, Micari F (2007) An analytical model for improving precision in single point incremental forming. J Mater Process Technol 191(1–3):92–95. https://doi.org/10.1016/j.jmatprotec.2007.03.079

    Article  Google Scholar 

  99. Bhattacharya A (2014) Studies on incremental forming to enhance accuracy and geometric complexity, PhD Dissertation, IIT Kanpur

  100. Lu B, Chen J, Ou H, Cao J (2013) Feature-based tool path generation approach for incremental sheet forming process. J Mater Process Technol 213(7):1221–1233. https://doi.org/10.1016/j.jmatprotec.2013.01.023

    Article  Google Scholar 

  101. Malhotra R (2012) Fundamentals of process mechanics and process innovation in incremental forming. PhD dissertation, Northwestern University

  102. Verbert J, Duflou J, Lauwers B (2007) Feature based approach for increasing the accuracy of the SPIF process. Key Eng Mater 344:527–534. https://doi.org/10.4028/www.scientific.net/KEM.344.527

    Article  Google Scholar 

  103. Behera AK, Lauwers B, Duflou JR (2014) Tool path generation framework for accurate manufacture of complex 3D sheet metal parts using single point incremental forming. Comput Ind 65(4):563–584. https://doi.org/10.1016/j.compind.2014.01.002

    Article  Google Scholar 

  104. Bambach M, Taleb Araghi B, Hirt G (2009) Strategies to improve the geometric accuracy in asymmetric single point incremental forming. Prod Eng 3(2):145–156. https://doi.org/10.1007/s11740-009-0150-8

    Article  Google Scholar 

  105. Verbert J (2010) Computer aided process planning for rapid prototyping with incremental sheet forming techniques, PhD dissertation Katholieke Universiteit Leuven

  106. Verbert J, Behera AK, Lauwers B, Duflou JR (2011) Multivariate adaptive regression splines as a tool to improve the accuracy of parts produced by FSPIF. Key Eng Mater 473:841–846. https://doi.org/10.4028/www.scientific.net/KEM.473.841

    Article  Google Scholar 

  107. Allwood JM, Music O, Raithathna A, Duncan SR (2009) Closed-loop feedback control of product properties in flexible metal forming processes with mobile tools. CIRP Ann Manuf Technol 58(1):287–290. https://doi.org/10.1016/j.cirp.2009.03.065

    Article  Google Scholar 

  108. Hirt G, Bambach M, Bleck W, Prahl U, Stollenwerk J (2015) The development of incremental sheet forming from flexible forming to fully integrated production of sheet metal parts, advances in production technology. 117–129, Springer International Publishing

  109. Elford M, Saha P, Seong D, Haque MZ, Yoon JW (2013) Benchmark 3 - incremental sheet forming, AIP Conference Proceedings, American Institute of Physics, Melbourne, 227–261

  110. Eyckens P, Van Bael A, Van Houtte P (2009) Marciniak-Kuczynski type modelling of the effect of through-thickness shear on the forming limits of sheet metal. Int J Plast 25(12):2249–2268. https://doi.org/10.1016/j.ijplas.2009.02.002

    Article  Google Scholar 

  111. Seong D, Haque MZ, Kim JB, Stoughton TB, Yoon JW (2014) Suppression of necking in incremental sheet forming. Int J Solids Struct 51(15–16):2840–2849. https://doi.org/10.1016/j.ijsolstr.2014.04.007

    Article  Google Scholar 

  112. Sena JIV, Guzmán CF, Duchêne L, Habraken AM, Behera AK, Duflou JR, Valente R, de Sousa RJA, (2015) Simulation of a two-slope pyramid made by SPIF using an adaptive remeshing method with solid-shell finite element. Int J Mater Form. Issn: 1960-6206. https://doi.org/10.1007/s12289-014-1213-8

    Article  Google Scholar 

  113. Duchêne L, Guzmán CF, Behera AK, Duflou JR, Habraken AM (2013) Numerical simulation of a pyramid steel sheet formed by single point incremental forming using solid-Shell finite elements. Key Eng Mater 549:180–188. https://doi.org/10.4028/www.scientific.net/KEM.549.180

    Article  Google Scholar 

  114. Tuninetti V, Yuan S, Gilles G, Guzmán CF, Habraken AM, Duchêne L (2016) Modeling the ductile fracture and the plastic anisotropy of DC01 steel at room temperature and low strain rates. J Phys Conf Ser 734:032075

    Article  Google Scholar 

  115. Sena J, Lequesne C, Duchene L, Habraken A, Valente R, Alves de Sousa R (2016) Single point incremental forming simulation with adaptive remeshing technique using solid-shell elements. Engineering Computations International Journal for Computer- Aided Engineering and Software 33(5):1388–1421

    Google Scholar 

  116. Bouffioux C, Eyckens P, Henrard C, Aerens R, Van Bael A, Sol H, Duflou JR, Habraken AM (2008) Identification of material parameters to predict single point incremental forming forces. Int J Mater Form 1(S1):1147–1150. https://doi.org/10.1007/s12289-008-0183-0

    Article  Google Scholar 

  117. Hill (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc Lond A 193(1033):281–297. https://doi.org/10.1098/rspa.1948.0045

    Article  MathSciNet  MATH  Google Scholar 

  118. Bambach M, Hirt G (2005) Performance assessment of element formulations and constitutive laws for the simulation of incremental sheet forming (ISF). Proceedings of the COMPLAS VIII, CIMNE, Barcelona, 1–4

  119. Flores P, Duchêne L, Bouffioux C, Lelotte T, Henrard C, Pernin N, Van Bael A, He S, Duflou JR, Habraken AM (2007) Model identification and FE simulations: effect of different yield loci and hardening laws in sheet forming. Int J Plast 23(3):420–449. https://doi.org/10.1016/j.ijplas.2006.05.006

    Article  MATH  Google Scholar 

  120. Eyckens P, Belkassem B, Henrard C, Gu J, Sol H, Habraken AM, Duflou JR, Van Bael A, Van Houtte P (2010) Strain evolution in the single point incremental forming process: digital image correlation measurement and finite element prediction. Int J Mater Form 4(1):55–71

    Article  Google Scholar 

  121. Bouffioux C, Lequesne C, Vanhove H, Duflou JR, Pouteau P, Duchêne L, Habraken AM (2011) Experimental and numerical study of an AlMgSc sheet formed by an incremental process. J Mater Process Technol 211(11):1684–1693. https://doi.org/10.1016/j.jmatprotec.2011.05.010

    Article  Google Scholar 

  122. Henrard C, Bouffioux C, Eyckens P, Sol H, Duflou JR, Van Houtte P, Van Bael A, Duchêne L, Habraken AM (2010) Forming forces in single point incremental forming: prediction by finite element simulations, validation and sensitivity. Comput Mech 47(5):573–590

    Article  Google Scholar 

  123. Lievers W, Pilkey AK, Lloyd DJ (2004) Using incremental forming to calibrate a void nucleation model for automotive aluminum sheet alloys. Acta Mater 52(10):3001–3007. https://doi.org/10.1016/j.actamat.2004.03.002

    Article  Google Scholar 

  124. Belchior J, Guillo M, Courteille E, Maurine P, Leotoing L, Guines D (2013) Off-line compensation of the tool path deviations on robotic machining: application to incremental sheet forming. Robot Comput Integr Manuf 29(4):58–69. https://doi.org/10.1016/j.rcim.2012.10.008

    Article  Google Scholar 

  125. Mirnia MJ, Mollaei Dariani B (2012) Analysis of incremental sheet metal forming using the upper-bound approach. Proc Inst Mech Eng B J Eng Manuf 226(8):1309–1320. https://doi.org/10.1177/0954405412445113

    Article  Google Scholar 

  126. Li Y, Liu Z, Lu H, Daniel WJT, Liu S, Meehan P (2014) Efficient force prediction for incremental sheet forming and experimental validation. Int J Adv Manuf Technol 73:571–587

    Article  Google Scholar 

  127. Li Y, Daniel WJT, Liu Z, Lu H, Meehan PA (2015) Deformation mechanics and efficient force prediction in single point incremental forming. J Mater Process Technol 221:100–111. https://doi.org/10.1016/j.jmatprotec.2015.02.009

    Article  Google Scholar 

  128. Jackson K (2008) The mechanics of incremental sheet forming. PhD thesis, University of Cambridge

  129. Bambach M (2010) A geometrical model of the kinematics of incremental sheet forming for the prediction of membrane strains and sheet thickness. J Mater Process Technol 210(12):1562–1573. https://doi.org/10.1016/j.jmatprotec.2010.05.003

    Article  Google Scholar 

  130. Hirt G, Bambach M (2005) Modelling incremental sheet forming using a meshless surface representation based on radial basis functions. Advanced Technology of Plasticity. Proceedings of the 8th International Conference on Technology of Plasticity, 261–262

  131. Raithatha A, Duncan SR (2009) Rigid plastic model of incremental sheet deformation using second-order cone programming. Int J Numer Methods Eng 78(8):955–979. https://doi.org/10.1002/nme.2512

    Article  MathSciNet  MATH  Google Scholar 

  132. Mirnia MJ, Mollaei Dariani B, Vanhove H, Duflou JR (2014) An investigation into thickness distribution in single point incremental forming using sequential limit analysis. Int J Mater Form 7(4):469–477. https://doi.org/10.1007/s12289-013-1143-x

    Article  Google Scholar 

  133. Filice L (2006) A phenomenology-based approach for modeling material thinning and formability in incremental forming of cylindrical parts. Proc IMechE 220(9):1449–1455. https://doi.org/10.1243/09544054JEM595

    Article  Google Scholar 

  134. Bambach M, Grzibovskis R (2013) Analysis of optimal metal flow in incremental sheet forming. PAMM 13(1):331–332. https://doi.org/10.1002/pamm.201310161

    Article  Google Scholar 

  135. Sebastiani G, Brosius A, Tekkaya AE, Homberg W, Kleiner M (2007) Decoupled simulation method for incremental sheet metal forming. AIP Conf Proc 908:1501–1506

    Article  Google Scholar 

  136. Hadoush A, van den Boogaard A (2009) Substructuring in the implicit simulation of single point incremental sheet forming. Int J Mater Form 2(3):181–189. https://doi.org/10.1007/s12289-009-0402-3

    Article  Google Scholar 

  137. Hadoush AMH (2010) Efficient simulation and process mechanics of incremental sheet forming. PhD thesis University of Twente, Netherland

  138. Hadoush A, van den Boogaard AH (2008) Time reduction in implicit single point incremental sheet forming simulation by refinement - derefinement. Int J Mater Form 1(1):1167–1170

    Article  Google Scholar 

  139. Lequesne C, Henrard C, Bouffioux C, Duflou JR, Habraken AM (2008) Adaptive remeshing for incremental forming simulation, Numisheet 2008, Interlaken, Switzerland, 32:4–8

  140. Giraud-Moreau L, Cherouat A, Zhang J, Borouchaki H (2013) Comparison between an advanced numerical simulations of sheet incremental forming using adaptive remeshing and experimental results. Key Eng Mater 554–557:1375–1381

    Article  Google Scholar 

  141. Suresh K, Regalla SP (2014) Effect of mesh parameters in finite element simulation of single point incremental sheet forming process. Procedia Materials Science 6:376–382. https://doi.org/10.1016/j.mspro.2014.07.048

    Article  Google Scholar 

  142. Bambach M (2016) Fast simulation of asymmetric incremental sheet metal forming by adaptive remeshing and subcycling. Int J Mater Form 9(3):353–360. https://doi.org/10.1007/s12289-014-1204-9

    Article  Google Scholar 

  143. Delamézière A, Yu Y, Robert C, Ayed LB, Nouari M (2010) Numerical simulation of incremental sheet forming by simplified approach. AIP Conf Proc 1315:619–624

    Google Scholar 

  144. Ben Ayed L, Robert C, Delamézière A, Nouari M, Batoz JL (2014) Simplified numerical approach for incremental sheet metal forming process. Eng Struct 62-63:75–86. https://doi.org/10.1016/j.engstruct.2014.01.033

    Article  Google Scholar 

  145. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32(1):157–169. https://doi.org/10.1016/0001-6160(84)90213-X

    Article  Google Scholar 

  146. Guzman CF (2016) Experimental and numerical characterization of damage and application to incremental forming, PhD thesis University of Liège http://hdl.handle.net/2268/192884

  147. Thomason PE (1990) Ductile fracture of metals. Pergamon Press, Oxford

    Google Scholar 

  148. Silva MB, Skjoedt M, Martins PAF, Bay N (2008) Revisiting the fundamentals of single point incremental forming by means of membrane analysis. Int J Mach Tools Manuf 48(1):73–83. https://doi.org/10.1016/j.ijmachtools.2007.07.004

    Article  Google Scholar 

  149. Jeswiet J, Young D (2005) Forming limit diagrams for single-point incremental forming of aluminium sheet. Proc Inst Mech Eng B J Eng Manuf 219(4):359–364. https://doi.org/10.1243/095440505X32210

    Article  Google Scholar 

  150. Xue L (2007) Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading. Int J Solids Struct 44(16):5163–5181. https://doi.org/10.1016/j.ijsolstr.2006.12.026

    Article  MATH  Google Scholar 

  151. Hussain G, Gao L, Hayat N, Qijian L (2007) The effect of variation in the curvature of part on the formability in incremental forming: an experimental investigation. Int J Mach Tools Manuf 47(14):2177–2181. https://doi.org/10.1016/j.ijmachtools.2007.05.001

    Article  Google Scholar 

  152. Xue L, Belytschko T (2010) Fast methods for determining instabilities of elastic-plastic damage models through closed-form expressions. Int J Numer Methods Eng 84(12):1490–1518. https://doi.org/10.1002/nme.2947

    Article  MathSciNet  MATH  Google Scholar 

  153. Ben Hmida R, Richard F, Thibaud S, Malécot P, (2015) Elastic-plastic damage behavior identification in micro scale length from instrumented micro-single point incremental forming 4M/ICOMM2015 conf., Milan, Italy, Research Publishing

  154. Lemaitre J, Chaboche JL (1985) Mécanique des Matériaux Solides, Dunod

  155. Cooper DR, Rossie KE, Gutowski TG (2017) The energy requirements and environmental impacts of sheet metal forming: an analysis of five forming processes. J Mater Process Technol 244:116–135. https://doi.org/10.1016/j.jmatprotec.2017.01.010

    Article  Google Scholar 

  156. Allwood JM, King GPF, Duflou J (2005) A structured search for applications of the incremental sheet forming process by product segmentation. Proc I Mech E, Part B, Journal of Engineering Manufacture 219(B2):239–244. https://doi.org/10.1243/095440505X8145

    Article  Google Scholar 

  157. Ambrogio G, De Napoli L, Filice L, Gagliardi F, Muzzupappa M (2005) Application of incremental forming process for high customised medical product manufacturing. J Mater Process Technol 162-163:156–162. https://doi.org/10.1016/j.jmatprotec.2005.02.148

    Article  Google Scholar 

  158. Duflou JR, Lauwers B, Verbert J, Gelaude F, Tunckol Y (2005) Medical application of single point incremental forming: cranial plate manufacturing, virtual modeling and rapid manufacturing. Proc. 2nd Int. Conf. on Advanced Research in Virtual and Rapid Prototyping 161–66

  159. Duflou JR, Behera AK, Vanhove H, Bertol LS (2013) Manufacture of accurate titanium Cranio-facial implants with high forming angle using single point incremental forming. Key Eng Mater 549:223–230. https://doi.org/10.4028/www.scientific.net/KEM.549.223

    Article  Google Scholar 

  160. Bagudanch I, Lozano-Sánchez LM, Puigpinós L, Sabater M, Elizalde LE, Elías-Zúñiga A, Garcia-Romeu ML (2015) Manufacturing of polymeric biocompatible cranial geometry by single point incremental forming. Procedia Engineering 132:267–273. https://doi.org/10.1016/j.proeng.2015.12.494

    Article  Google Scholar 

  161. Göttmann A, Korinth M (2012) Manufacturing of cranial implants using incremental sheet metal forming. Proceedings 1st Internat. Conf. on Design and Processes for Medical Devices PROMED, 287-290

  162. Lu B, Xu DK, Liu RZ, Ou H, Long H, Chen J (2015) Cranial reconstruction using double side incremental forming. Key Eng Mater 639:535–542. https://doi.org/10.4028/www.scientific.net/KEM.639.535

    Article  Google Scholar 

  163. Vanhove H, Carette Y, Vancleef S, Duflou JR (2017) Production of thin shell clavicle implants through single point incremental forming. Procedia Engineering 183:174–179. https://doi.org/10.1016/j.proeng.2017.04.058

    Article  Google Scholar 

  164. McAllister P, Jeswiet J (2003) Medical device regulation for manufacturers. J Eng Med 217(H):459–467. https://doi.org/10.1243/09544110360729090

    Article  Google Scholar 

  165. Bailly D, Bambach M, Hirt G, Pofahl T, Herkrath R, Trautz M, (2014) Analysis into Differences betweenthe Buckling in Single-Point and Two-Point Incremental Sheet Forming of Components for Self-SupportingSheet Metal Structures. Key Eng Mater 622:367–374

  166. Padrao JL (2009) Single point incremental forming, Msc Thesis. Instituto Superior Tecnico Universidade Tecnica de Lisboa

  167. Appermont R, Van Mieghem B, Van Bael, A, Bens J, Ivens J, Vanhove H, Behera AK, Duflou J (2012) Sheet-metal based molds for low-pressure processing of thermoplastics. Proceedings of the 5th Bi-Annual PMI Conference 5:383–388

  168. Bens J, Van Mieghem B, Appermont R, Vanhove H, Van Bael A, Duflou J, Ivens J (2012) Development of material and energy-efficient metal sheet based tools for composite manufacturing, Proceedings 15th European Conf. on Composite Materials, ECCM, Venice

  169. Young D, Jeswiet J (2004) Wall thickness variations in single-point incremental forming. Proc Inst Mech Eng B J Eng Manuf 218(11):1453–1459. https://doi.org/10.1243/0954405042418400

    Article  Google Scholar 

  170. Ambrogio G, Di Lorenzo R, Micari F (2003) Analysis of the economical effectiveness of incremental forming processes: an industrial case study. Proceedings VI AITeM Conference, Gaeta, Italy

  171. Ambrogio G, Sgambitterra E, De Napoli L, Gagliardi F, Fragomeni G, Piccininni A, Gugleilmi P, Palumbo G, Sorgente D, La Barbera L, Villa TM (2017) Performance analysis of titanium prostheses manufactured by superplastic forming and incremental forming. Procedia Engineering 183:168–173. https://doi.org/10.1016/j.proeng.2017.04.057

    Article  Google Scholar 

  172. Centeno G, Bagudanch I, Morales-Palma D, Garcia-Romeu ML, Gonzalez-Perez-Somarriba B, Martinez-Donaire AJ, Gonzalez-Perez LM, Vallellano C (2017) Recent approaches for the manufacturing of polymeric cranial prostheses by incremental sheet forming. Procedia Engineering 183:180–187. https://doi.org/10.1016/j.proeng.2017.04.059

    Article  Google Scholar 

Download references

Acknowledgements

J.R. Duflou, A. Mohammadi and H. Vanhove want to acknowledge the support of Research Fund - Flanders (FWO) under project G0B4413N: LASPIF, and the support of KU Leuven through the GOA SUMMA project.

As research director of FNRS AM Habraken acknowledges the support of F.R.S FNRS as well as its PDR Grant on the SPIF process. Belspo (Belgian Science Policy) is also thanked for the PAI P7/21 grant.

For D. Adams and J. Jeswiet, supporting funds were obtained from NSERC (Natural Science and Engineering Research Foundation), both Discovery and Engage grants, and Auto 21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost R. Duflou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duflou, J.R., Habraken, AM., Cao, J. et al. Single point incremental forming: state-of-the-art and prospects. Int J Mater Form 11, 743–773 (2018). https://doi.org/10.1007/s12289-017-1387-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-017-1387-y

Keywords

Navigation