Skip to main content
Log in

Free kick goals in football: an unlikely success between failure and embarrassment

  • Original Article
  • Published:
Sports Engineering Aims and scope Submit manuscript

Abstract

We develop and use a numerical model to investigate the window of opportunity of free kicks in association football. The planar multibody forward dynamics model comprises a two segment leg model with joint actuations, a football, a wall and the turf. Contact mechanics is defined to model the impact of the foot and the ball’s interaction with the different elements in the environment. The optimum kick is determined using the global optimization algorithm differential evolution, requiring millions of kick simulations. The sensitivity of various solutions to parameter perturbation is investigated. It is concluded that toe kicks are theoretically superior to instep kicks, but are difficult to perform reliably. The results also show that small perturbations in parameters can lead to embarrassingly failed kicks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ackermann M, Van den Bogert AJ (2012) Predictive simulation of gait at low gravity reveals skipping as the preferred locomotion strategy. J Biomech 45(7):1293–1298

    Article  Google Scholar 

  2. Andersen T, Dörge HC, Thomsen FI (1999) Collisions in soccer kicking. Sports Eng 2(2):121–125

    Article  Google Scholar 

  3. Asai T, Carré M, Akatsuka T, Haake S (2002) The curve kick of a football I: impact with the foot. Sports Eng 5(4):183–192

    Article  Google Scholar 

  4. Asai T, Seo K, Kobayashi O, Sakashita R (2007) Fundamental aerodynamics of the soccer ball. Sports Eng 10(2):101–109

    Article  Google Scholar 

  5. Bray K, Kerwin DG (2003) Modelling the flight of a soccer ball in a direct free kick. J Sports Sci 21(2):75–85. https://doi.org/10.1080/0264041031000070994

    Article  Google Scholar 

  6. Carre MJ, Haake SJ, Asai T, Akatsuka T (2002) The curve kick of a football II: flight through the air. Sports Eng 1(5):193–200. https://doi.org/10.1046/j.1460-2687.2002.00109.x

    Article  Google Scholar 

  7. Cook BG, Goff JE (2006) Parameter space for successful soccer kicks. Eur J Phys 27(4):865–874. https://doi.org/10.1088/0143-0807/27/4/017

    Article  Google Scholar 

  8. Goff JE (2013) A review of recent research into aerodynamics of sport projectiles. Sports Eng 16(3):137–154

    Article  Google Scholar 

  9. Goff JE, Carré MJ (2009) Trajectory analysis of a soccer ball. Am J Phys 77(11):1020–1027

    Article  Google Scholar 

  10. Gonthier Y, McPhee J, Lange C, Piedboeuf JC (2004) A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst Dyn 11(3):209–233

    Article  MATH  Google Scholar 

  11. Haake S, Goodwill S, Carre M (2007) A new measure of roughness for defining the aerodynamic performance of sports balls. Proc Inst Mech Eng Part C J Mech Eng Sci 221(7):789–806

    Article  Google Scholar 

  12. Heinen F, Sørensen SN, King M, Lewis M, Lund ME, Rasmussen J, de Zee M (2017) Muscle-tendon unit parameter estimation of a Hill-type musculoskeletal model based on experimentally obtained subject-specific torque profiles. Comput Methods Biomech Biomed Eng (In review)

  13. James D, Haake S (2009) The spin decay of sports balls in flight (p172). In: The engineering of sport vol 7. Springer, Berlin, pp 165–170

  14. Lees A, Asai T, Andersen TB, Nunome H, Sterzing T (2010) The biomechanics of kicking in soccer: a review. J Sports Sci 28(8):805–17. https://doi.org/10.1080/02640414.2010.481305

    Article  Google Scholar 

  15. Link D, Kolbinger O, Weber H, Stöckl M (2016) A topography of free kicks in soccer. J Sports Sci 34(24):2312–2320. https://doi.org/10.1080/02640414.2016.1232487

    Article  Google Scholar 

  16. Machado M, Moreira P, Flores P, Lankarani HM (2012) Compliant contact force models in multibody dynamics: evolution of the hertz contact theory. Mech Mach Theory 53:99–121

    Article  Google Scholar 

  17. Mehta RD (1985) Aerodynamics of sports balls. Annu Rev Fluid Mech 17(1):151–189

    Article  Google Scholar 

  18. Nikravesh PE (2008) Planar multibody dynamics: formulation, programming and applications. CRC Press, Boca Raton

    MATH  Google Scholar 

  19. Price K, Storn RM, Lampinen JA (2006) Differential evolution: a practical approach to global optimization. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  20. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  21. Winter DA (1990) Biomechanics and motor control of human movement. Wiley, New York

    Google Scholar 

  22. Yiannakos A, Armatas V (2006) Evaluation of the goal scoring patterns in European Championship in Portugal 2004. Int J Perform Anal Sport 6(1):178–188

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Rasmussen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sørensen, S.N., Rasmussen, J. Free kick goals in football: an unlikely success between failure and embarrassment. Sports Eng 21, 103–114 (2018). https://doi.org/10.1007/s12283-017-0257-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12283-017-0257-7

Keywords

Navigation