Skip to main content
Log in

Development of a Novel D-Lactic Acid Production Platform Based on Lactobacillus saerimneri TBRC 5746

  • Systems and Synthetic Microbiology and Bioinformatics
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

D-Lactic acid is a chiral, three-carbon organic acid, that bolsters the thermostability of polylactic acid. In this study, we developed a microbial production platform for the high-titer production of D-lactic acid. We screened 600 isolates of lactic acid bacteria (LAB) and identified twelve strains that exclusively produced D-lactic acid in high titers. Of these strains, Lactobacillus saerimneri TBRC 5746 was selected for further development because of its homofermentative metabolism. We investigated the effects of high temperature and the use of cheap, renewable carbon sources on lactic acid production and observed a titer of 99.4 g/L and a yield of 0.90 g/g glucose (90% of the theoretical yield). However, we also observed L-lactic acid production, which reduced the product’s optical purity. We then used CRISPR/dCas9-assisted transcriptional repression to repress the two Lldh genes in the genome of L. saerimneri TBRC 5746, resulting in a 38% increase in D-lactic acid production and an improvement in optical purity. This is the first demonstration of CRISPR/dCas9-assisted transcriptional repression in this microbial host and represents progress toward efficient microbial production of D-lactic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Rahman, M. A., & Sonomoto, K. (2016). Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. Journal of Biotechnology, 236, 176–192.

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances, 31, 877–902.

    Article  CAS  PubMed  Google Scholar 

  • Aguirre-Ezkauriatza, E. J., Aguilar-Yáñez, J. M., Ramírez-Medrano, A., & Alvarez, M. M. (2010). Production of probiotic biomass (Lactobacillus casei) in goat milk whey: Comparison of batch, continuous and fed-batch cultures. Bioresource Technology, 101, 2837–2844.

    Article  CAS  PubMed  Google Scholar 

  • Alves de Oliveira, R., Komesu, A., Rossell, C. E. V., & Maciel Filho, R. (2018). Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects. Biochemical Engineering Journal, 133, 219–239.

    Article  CAS  Google Scholar 

  • Bae, S., Park, J., & Kim, J. S. (2014). Cas-OFFinder: A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics, 30, 1473–1475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai, D. M., Wei, Q., Yan, Z. H., Zhao, X. M., Li, X. G., & Xu, S. M. (2003). Fed-batch fermentation of Lactobacillus lactis for hyper-production of L-lactic acid. Biotechnology Letters, 25, 1833–1835.

    Article  CAS  PubMed  Google Scholar 

  • Bai, Z., Gao, Z., Sun, J., Wu, B., & He, B. (2016). D-Lactic acid production by Sporolactobacillus inulinus YBS1-5 with simultaneous utilization of cottonseed meal and corncob residue. Bioresource Technology, 207, 346–352.

    Article  CAS  PubMed  Google Scholar 

  • Bai, H., Deng, S., Bai, D., Zhang, Q., & Fu, Q. (2017). Recent Advances in Processing of Stereocomplex-Type Polylactide. Macromolecular Rapid Communications, 38, 1700454.

  • Castro-Aguirre, E., Iniguez-Franco, F., Samsudin, H., Fang, X., & Auras, R. (2016). Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews, 107, 333–366.

    Article  CAS  PubMed  Google Scholar 

  • Chen, N., Wang, J., Zhao, Y., & Deng, Y. (2018). Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer. Microbial Cell Factories, 17, 67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi, Y. J., & Lee, S. Y. (2013). Microbial production of short-chain alkanes. Nature, 502, 571–574.

    Article  CAS  PubMed  Google Scholar 

  • Coelho, L. F., de Lima, C. J., Bernardo, M. P., & Contiero, J. (2011). D(-)-lactic acid production by Leuconostoc mesenteroides B512 using different carbon and nitrogen sources. Applied Biochemistry and Biotechnology, 164, 1160–1171.

    Article  CAS  PubMed  Google Scholar 

  • Dominguez, A. A., Lim, W. A., & Qi, L. S. (2016). Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nature Reviews Molecular Cell Biology, 17, 5–15.

    Article  CAS  PubMed  Google Scholar 

  • Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346, 1258096.

    Article  PubMed  Google Scholar 

  • Gänzle, M. G., & Follador, R. (2012). Metabolism of oligosaccharides and starch in lactobacilli: a review. Frontiers in Microbiology, 3, 340.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu, S. A., Jun, C., Joo, J. C., Kim, S., Lee, S. H., & Kim, Y. H. (2014). Higher thermostability of L-lactate dehydrogenases is a key factor in decreasing the optical purity of D-lactic acid produced from Lactobacillus coryniformis. Enzyme and Microbial Technology, 58–59, 29–35.

    Article  PubMed  Google Scholar 

  • Huang, H., Song, X., & Yang, S. (2019). Development of a RecE/T-Assisted CRISPR–Cas9 Toolbox for Lactobacillus. Biotechnology Journal, 14, e1800690.

    Article  PubMed  Google Scholar 

  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun, C., Sa, Y. S., Gu, S. A., Joo, J. C., Kim, S., Kim, K. J., & Kim, Y. H. (2013). Discovery and characterization of a thermostable D-lactate dehydrogenase from Lactobacillus jensenii through genome mining. Process Biochemistry, 48, 109–117.

    Article  CAS  Google Scholar 

  • Juturu, V., & Wu, J. C. (2016). Microbial production of lactic acid: The latest development. Critical Reviews in Biotechnology, 36, 967–977.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S., Gu, S. A., Kim, Y. H., & Kim, K. J. (2014). Crystal structure and thermodynamic properties of D-lactate dehydrogenase from Lactobacillus jensenii. International Journal of Biological Macromolecules, 68, 151–157.

    Article  CAS  PubMed  Google Scholar 

  • Kruyer, N. S., & Peralta-Yahya, P. (2017). Metabolic engineering strategies to bio-adipic acid production. Current Opinion in Biotechnology, 45, 136–143.

    Article  CAS  PubMed  Google Scholar 

  • Lahtinen, S., Ouwehand, A. C., Salminen, S., & von Wright, A. (2012). Lactic Acid Bacteria: Microbiological and Functional Aspects (4th ed.). CRC Press.

    Google Scholar 

  • Leenay, R. T., Vento, J. M., Shah, M., Martino, M. E., Leulier, F., & Beisel, C. L. (2019). Genome editing with CRISPR-Cas9 in Lactobacillus plantarum revealed that editing outcomes can vary across strains and between methods. Biotechnology Journal, 14, e1700583.

    Article  PubMed  Google Scholar 

  • Liao, J. C., Mi, L., Pontrelli, S., & Luo, S. (2016). Fuelling the future: microbial engineering for the production of sustainable biofuels. Nature Reviews Microbiology, 14, 288–304.

    Article  CAS  PubMed  Google Scholar 

  • Loubiere, P., Cocaign-Bousquet, M., Matos, J., Goma, G., & Lindley, N. D. (1997). Influence of end-products inhibition and nutrient limitations on the growth of Lactococcus lactis subsp. lactis. Journal of Applied Microbiology, 82, 95–100.

    Article  CAS  Google Scholar 

  • Luedeking, R., & Piret, E. L. (1959). A kinetic study of the lactic acid fermentation. Batch process at controlled pH. Biotechnology and Bioengineering, 1, 393–412.

    CAS  Google Scholar 

  • Moon, T. S., Yoon, S. H., Lanza, A. M., Roy-Mayhew, J. D., & Prather, K. L. (2009). Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Applied and Environmental Microbiology, 75, 589–595.

    Article  CAS  PubMed  Google Scholar 

  • Othman, M., Ariff, A. B., Rios-Solis, L., & Halim, M. (2017). Extractive fermentation of lactic acid in lactic acid bacteria cultivation: a review. Frontiers in Microbiology, 8, 2285.

    Article  PubMed  PubMed Central  Google Scholar 

  • Park, J., Bae, S., & Kim, J. S. (2015). Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics, 31, 4014–4016.

    Article  CAS  PubMed  Google Scholar 

  • Reid, S. J., & Abratt, V. R. (2005). Sucrose utilisation in bacteria: genetic organisation and regulation. Applied Microbiology and Biotechnology, 67, 312–321.

    Article  CAS  PubMed  Google Scholar 

  • Romano, A., Trip, H., Campbell-Sills, H., Bouchez, O., Sherman, D., Lolkema, J. S., & Lucas, P. M. (2013). Genome sequence of Lactobacillus saerimneri 30a (Formerly Lactobacillus sp. Strain 30a), a reference lactic acid bacterium strain producing biogenic amines. Genome Announcements, 1, e00097-e112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sornlek, W., Sae-Tang, K., Watcharawipas, A., Wongwisansri, S., Tanapongpipat, S., Eurwilaichtr, L., Champreda, V., Runguphan, W., Schaap, P. J., & Martins Dos Santos, V. A. P. (2022). D-Lactic acid production from sugarcane bagasse by genetically engineered Saccharomyces cerevisiae. Journal of Fungi, 8, 816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watcharawipas, A., Sae-Tang, K., Sansatchanon, K., Sudying, P., Boonchoo, K., Tanapongpipat, S., Kocharin, K., & Runguphan, W. (2021). Systematic engineering of Saccharomyces cerevisiae for D-lactic acid production with near theoretical yield. FEMS Yeast Research, 21, foab024.

  • Wu, J., Xin, Y., Kong, J., & Guo, T. (2021). Genetic tools for the development of recombinant lactic acid bacteria. Microbial Cell Factories, 20, 118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The project was funded by the Integrated Technology Platform (Biobased Materials) project, “IBMDL1-High-level Microbial Production of Enantiomerically Pure D-lactic Acid,” supported by the National Science and Technology Development Agency [grant number P-17-522777].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, WR, WV and KK; methodology, WR and KK; validation, KS, PS, YK, KK and WR; formal analysis, KK and WR; investigation, KS, PS and PP; resources, WR; data curation, KS, PS, YK, KK and WR; writing—original draft preparation, WR and KK; writing—review and editing, WR, KK and PP; visualization, WR and KK; supervision, WV, ST, WR and KK; project administration, WR and KK; funding acquisition, WR All authors have read and agreed to the published version of the manuscript.”

Corresponding author

Correspondence to Kanokarn Kocharin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funder had no role in the design of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Ethical approval

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 307 KB)

Supplementary file2 (XLSX 61 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sansatchanon, K., Sudying, P., Promdonkoy, P. et al. Development of a Novel D-Lactic Acid Production Platform Based on Lactobacillus saerimneri TBRC 5746. J Microbiol. 61, 853–863 (2023). https://doi.org/10.1007/s12275-023-00077-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-023-00077-x

Keywords

Navigation