Skip to main content
Log in

The Regulation of Phosphorus Release by Penicillium chrysogenum in Different Phosphate via the TCA Cycle and Mycelial Morphology

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Phosphate-solubilizing fungi (PSF) efficiently dissolve insoluble phosphates through the production of organic acids. This study investigates the mechanisms of organic acid secretion by PSF, specifically Penicillium chrysogenum, under tricalcium phosphate (Ca3(PO4)2, Ca–P) and ferric phosphate (FePO4, Fe–P) conditions. Penicillium chrysogenum exhibited higher phosphorus (P) release efficiency from Ca-P (693.6 mg/L) than from Fe–P (162.6 mg/L). However, Fe–P significantly enhanced oxalic acid (1193.7 mg/L) and citric acid (227.7 mg/L) production by Penicillium chrysogenum compared with Ca–P (905.7 and 3.5 mg/L, respectively). The presence of Fe–P upregulated the expression of genes and activity of enzymes related to the tricarboxylic acid cycle, including pyruvate dehydrogenase and citrate synthase. Additionally, Fe–P upregulated the expression of chitinase and endoglucanase genes, inducing a transformation of Penicillium chrysogenum mycelial morphology from pellet to filamentous. The filamentous morphology exhibited higher efficiency in oxalic acid secretion and P release from Fe–P and Ca–P. Compared with pellet morphology, filamentous morphology enhanced P release capacity by > 40% and > 18% in Ca–P and Fe–P, respectively. This study explored the strategies employed by PSF to improve the dissolution of different insoluble phosphates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  • Alekseev, K. V., Dubina, M. V., & Komov, V. P. (2017). Molecular-genetic and biochemical characteristics of citrate synthase from the citric-acid producing fungus Aspergillus niger. Applied Biochemistry and Microbiology, 52, 810–817.

    Article  Google Scholar 

  • Babana, A. H., & Antoun, H. (2006). Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant and Soil, 287, 51–58.

    Article  CAS  Google Scholar 

  • Behera, B. C. (2020). Citric acid from Aspergillus niger: A comprehensive overview. Critical Reviews in Microbiology, 46, 727–749.

    Article  CAS  PubMed  Google Scholar 

  • Boot, R. G., Blommaart, E. F., Swart, E., Ghauharali-van der Vlugt, K., Bijl, N., Moe, C., Place, A., & Aerts, J. M. (2001). Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. The Journal of Biological Chemistry, 276, 6770–6778.

    Article  CAS  PubMed  Google Scholar 

  • Bouzidia, N., Hamdi, B., & Ben Salah, A. (2016). A new non-centrosymmetric microporous fluorinated iron phosphate: Structural elucidation, spectroscopic study and Hirshfeld surface analysis. Chemical Research in Chinese Universities, 32, 519–526.

    Article  CAS  Google Scholar 

  • Busato, J. G., Lima, L. S., Aguiar, N. O., Canellas, L. P., & Olivares, F. L. (2012). Changes in labile phosphorus forms during maturation of vermicompost enriched with phosphorus-solubilizing and diazotrophic bacteria. Bioresource Technology, 110, 390–395.

    Article  CAS  PubMed  Google Scholar 

  • Canteri, H., & Ghoul, M. (2015). Submerged liquid culture for production of biomass and spores of Penicillium. Food Reviews International, 31, 262–278.

    Article  CAS  Google Scholar 

  • Chen, H. Y. (2019). Why the reactive oxygen species of the fenton reaction switches from oxoiron(IV) species to hydroxyl radical in phosphate buffer solutions? A computational rationale. ACS Omega, 4, 14105–14113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarholm, M., Skyllberg, U., & Rosling, A. (2015). Organic acid induced release of nutrients from metal-stabilized soil organic matter—The unbutton model. Soil Biology and Biochemistry, 84, 168–176.

    Article  CAS  Google Scholar 

  • Cronenberg, C. C. H., Ottengraf, S. P. P., Van den Heuvel, J. C., Pottel, F., Sziele, D., Schügerl, K., & Bellgardt, K. H. (1994). Influence of age and structure of Pencillium chrysogenum pellets on the internal concentration profiles. Bioprocess Engineering, 10, 209–216.

    Article  Google Scholar 

  • Cwiertny, D. M., Hunter, G. J., Pettibone, J. M., Scherer, M. M., & Grassian, V. H. (2009). Surface chemistry and dissolution of α-FeOOH nanorods and microrods: Environmental implications of size-dependent interactions with oxalate. The Journal of Physical Chemistry C, 113, 2175–2186.

    Article  CAS  Google Scholar 

  • Dai, Z., Zhang, X. N., Nasertorabi, F., Cheng, Q., Pei, H., Louie, S. G., Stevens, R. C., & Zhang, Y. (2018). Facile chemoenzymatic synthesis of a novel stable mimic of NAD+. Chemical Science, 9, 8337–8342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Oliveira Mendes, G., Murta, H. M., Valadares, R. V., da Silveira, W. B., da Silva, I. R., & Costa, M. D. (2020). Oxalic acid is more efficient than sulfuric acid for rock phosphate solubilization. Minerals Engineering, 155, 106458.

    Article  Google Scholar 

  • Dutton, M. V., & Evans, C. S. (1996). Oxalate production by fungi: Its role in pathogenicity and ecology in the soil environment. Canadian Journal of Microbiology, 42, 881–895.

    Article  CAS  Google Scholar 

  • Fischmann, A. J., & Dixon, D. G. (2009). Awaruite (Ni3Fe) as a nickel resource-leaching with ammoniacal–ammonium solution containing citrate and thiosulfate. Hydrometallurgy, 99, 214–224.

    Article  CAS  Google Scholar 

  • Fomina, M., Hillier, S., Charnock, J. M., Melville, K., Alexander, I. J., & Gadd, G. M. (2005). Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica. Applied and Environmental Microbiology, 71, 371–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadd, G. M., Bahri-Esfahani, J., Li, Q., Rhee, Y. J., Wei, Z., Fomina, M., & Liang, X. (2014). Oxalate production by fungi: Significance in geomycology, biodeterioration and bioremediation. Fungal Biology Reviews, 28, 36–55.

    Article  Google Scholar 

  • Hanaka, A., Ozimek, E., Majewska, M., Rysiak, A., & Jaroszuk-Ściseł, J. (2019). Physiological diversity of spitsbergen soil microbial communities suggests their potential as plant growth-promoting bacteria. International Journal of Molecular Sciences, 20, 1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, Y., Tian, J., & Ge, F. (2020). New insight into carboxylic acid metabolisms and pH regulations during insoluble phosphate solubilisation process by Penicillium oxalicum PSF-4. Current Microbiology, 77, 4095–4103.

    Article  CAS  PubMed  Google Scholar 

  • Koyama, H., Kawamura, A., Kihara, T., Hara, T., Takita, E., & Shibata, D. (2000). Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant & Cell Physiology, 41, 1030–1037.

    Article  CAS  Google Scholar 

  • Kumar, R., & Shastri, B. (2017). Role of phosphate-solubilising microorganisms in sustainable agricultural development. In J. Singh & G. Seneviratne (Eds.), Agro-environmental sustainability. Springer.

    Google Scholar 

  • Li, Z., Bai, T., Dai, L., Wang, F., Tao, J., Meng, S., Hu, Y., Wang, S., & Hu, S. (2016). A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger. Scientific Reports, 6, 25313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, H., Zheng, Z., Wang, P., Gong, G., Wang, L., & Zhao, G. (2013). Morphological changes induced by class III chitin synthase gene silencing could enhance penicillin production of Penicillium chrysogenum. Applied Microbiology and Biotechnology, 97, 3363–3372.

    Article  CAS  PubMed  Google Scholar 

  • López-Bucio, J., de La Vega, O. M., Guevara-García, A., & Herrera-Estrella, L. (2000). Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nature Biotechnology, 18, 450–453.

    Article  PubMed  Google Scholar 

  • Mäkelä, M. R., Hildén, K., & Lundell, T. K. (2010). Oxalate decarboxylase: Biotechnological update and prevalence of the enzyme in filamentous fungi. Applied Microbiology and Biotechnology, 87, 801–814.

    Article  PubMed  Google Scholar 

  • Marx, N., Croguennec, L., Carlier, D., Bourgeois, L., Kubiak, P., Cras, F. L., & Delmas, C. (2010). Structural and electrochemical study of a new crystalline hydrated iron(III) phosphate FePO4·H2O obtained from LiFePO4(OH) by ion exchange. Chemistry of Materials, 22, 1854–1861.

    Article  CAS  Google Scholar 

  • Mattevi, A., Obmolova, G., Schulze, E., Kalk, K. H., Westphal, A. H., de Kok, A., & Hol, W. G. (1992). Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex. Science, 255, 1544–1550.

    Article  CAS  PubMed  Google Scholar 

  • McIntyre, M., Müller, C., Dynesen, J., & Nielsen, J. (2001). Metabolic engineering of the morphology of Aspergillus. Advances in Biochemical Engineering/biotechnology, 73, 103–128.

    Article  CAS  PubMed  Google Scholar 

  • Menezes-Blackburn, D., Paredes, C., Zhang, H., Giles, C. D., Darch, T., Stutter, M., George, T. S., Shand, C., Lumsdon, D., Cooper, P., et al. (2016). Organic acids regulation of chemical microbial phosphorus transformations in soils. Environmental Science & Technology, 50, 11521–11531.

    Article  CAS  Google Scholar 

  • Merzendorfer, H. (2011). The cellular basis of chitin synthesis in fungi and insects: Common principles and differences. European Journal of Cell Biology, 90, 759–769.

    Article  CAS  PubMed  Google Scholar 

  • Palmieri, F., Estoppey, A., House, G. L., Lohberger, A., Bindschedler, S., Chain, P. S. G., & Junier, P. (2019). Chapter two-oxalic acid, a molecule at the crossroads of bacterial-fungal interactions. In G. M. Gadd & S. Sariaslani (Eds.), Advances in applied microbiology (Vol. 106, pp. 49–77). Academic Press.

    Google Scholar 

  • Papagianni, M., & Mattey, M. (2006). Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelial morphology. Microbial Cell Factories, 5, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Papagianni, M., & Moo-Young, M. (2002). Protease secretion in glucoamylase producer Aspergillus niger cultures: Fungal morphology and inoculum effects. Process Biochemistry, 37, 1271–1278.

    Article  CAS  Google Scholar 

  • Qaswar, M., Dongchu, L., Jing, H., Tianfu, H., Ahmed, W., Abbas, M., Lu, Z., Jiangxue, D., Khan, Z. H., Ullah, S., et al. (2020). Interaction of liming and long-term fertilization increased crop yield and phosphorus use efficiency (PUE) through mediating exchangeable cations in acidic soil under wheat-maize cropping system. Scientific Reports, 10, 19828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawat, P., Das, S., Shankhdhar, D., & Shankhdhar, S. C. (2021). Phosphate-solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition, 21, 49–68.

    Article  CAS  Google Scholar 

  • Ryan, P., Delhaize, E., & Jones, D. (2001). Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 527–560.

    Article  CAS  PubMed  Google Scholar 

  • Saxena, J., Basu, P., Jaligam, V., & Chandra, S. (2013). Phosphate solubilization by a few fungal strains belonging to the genera Aspergillus and Penicillium. African Journal of Microbiology Research, 7, 4862–4869.

    Article  Google Scholar 

  • Schmalenberger, A., Duran, A. L., Bray, A. W., Bridge, J., Bonneville, S., Benning, L. G., Romero-Gonzalez, M. E., Leake, J. R., & Banwart, S. A. (2015). Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals. Scientific Reports, 5, 12187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spohr, A., Carlsen, M., Nielsen, J., & Villadsen, J. (1997). Morphological characterization of recombinant strains of Aspergillus oryzae producing alpha-amylase during batch cultivations. Biotechnology Letters, 19, 257–262.

    Article  CAS  Google Scholar 

  • Su, M., Meng, L., Zhao, L., Tang, Y., Qiu, J., Tian, D., & Li, Z. (2021). Phosphorus deficiency in soils with red color: Insights from the interactions between minerals and microorganisms. Geoderma, 404, 115311.

    Article  CAS  Google Scholar 

  • Tian, D., Wang, W., Su, M., Zheng, J., Wu, Y., Wang, S., Li, Z., & Hu, S. (2018). Remediation of lead-contaminated water by geological fluorapatite and fungus Penicillium oxalicum. Environmental Science and Pollution Research International, 25, 21118–21126.

    Article  CAS  PubMed  Google Scholar 

  • Tian, D., Jiang, Z., Jiang, L., Su, M., Feng, Z., Zhang, L., Wang, S., Li, Z., & Hu, S. (2019). A new insight into lead (II) tolerance of environmental fungi based on a study of Aspergillus niger and Penicillium oxalicum. Environmental Microbiology, 21, 471–479.

    Article  CAS  PubMed  Google Scholar 

  • Tian, D., Su, M., Zou, X., Zhang, L., Tang, L., Geng, Y., Qiu, J., Wang, S., Gao, H., & Li, Z. (2021a). Influences of phosphate addition on fungal weathering of carbonate in the red soil from karst region. Science of the Total Environment, 755, 142570.

    Article  CAS  PubMed  Google Scholar 

  • Tian, D., Wang, L., Hu, J., Zhang, L., Zhou, N., Xia, J., Xu, M., Yusef, K. K., Wang, S., Li, Z., et al. (2021b). A study of P release from Fe–P and Ca–P via the organic acids secreted by Aspergillus niger. Journal of Microbiology, 59, 819–826.

    Article  CAS  PubMed  Google Scholar 

  • Tomer, S., Suyal, D. C., & Goel, R. (2016). Biofertilizers: a timely approach for sustainable agriculture. In D. Choudhary, A. Varma, & N. Tuteja (Eds.), Plant-microbe interaction: An approach to sustainable agriculture. Springer.

    Google Scholar 

  • Tsuizaki, M., Takeshita, N., Ohta, A., & Horiuchi, H. (2009). Myosin motor-like domain of the class VI chitin synthase CsmB is essential to its functions in Aspergillus nidulans. Bioscience, Biotechnology, and Biochemistry, 73, 1163–1167.

    Article  CAS  PubMed  Google Scholar 

  • Van Suijdam, J. C., Kossen, N. W. F., & Paul, P. G. (1980). An inoculum technique for the production of fungal pellets. European Journal of Applied Microbiology and Biotechnology, 10, 211–221.

    Article  Google Scholar 

  • Varadachari, C., Barman, A. K., & Ghosh, K. (1994). Weathering of silicate minerals by organic acids II. Nature of Residual Products. Geoderma, 61, 251–268.

    CAS  Google Scholar 

  • Veneklaas, E. J., Lambers, H., Bragg, J., Finnegan, P. M., Lovelock, C. E., Plaxton, W. C., Price, C. A., Scheible, W. R., Shane, M. W., et al. (2012). Opportunities for improving phosphorus-use efficiency in crop plants. New Phytologist, 195, 306–320.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Guan, H., Hu, J., Feng, Y., Li, X., Yusef, K. K., Gao, H., & Tian, D. (2022). Aspergillus niger enhances organic and onorganic phosphorus release from wheat straw by secretion of degrading enzymes and oxalic acid. Journal of Agricultural and Food Chemistry, 70, 10738–10746.

    Article  CAS  PubMed  Google Scholar 

  • Wongwicharn, A., McNeil, B., & Harvey, L. M. (1999). Effect of oxygen enrichment on morphology, growth, and heterologous protein production in chemostat cultures of Aspergillus niger B1-D. Biotechnology and Bioengineering, 65, 416–424.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, R., Wang, Y., Zhang, M., Yu, P. X., & Li, J. (2019). Adsorptive removal of phosphate from aqueous solutions by thermally modified copper tailings. Environmental Monitoring and Assessment, 191, 198.

    Article  PubMed  Google Scholar 

  • Žnidaršić, P., & Pavko, A. (2001). The morphology of filamentous fungi in submerged cultivations as a bioprocess parameter. Food Technology and Biotechnology, 39, 237–252.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NO. 42007030 and 41877099), the Science and Technology Major Project of Anhui Province (202103a06020012), the program at the department of natural resources of Anhui Province (NO. 2021-K-4 and 2021-K-11), and the program at Anhui Agricultural University (NO. yj2019-20). The authors would like to thank BGI Genomics Co., Ltd. (Shenzhen, China) for assistance with sequencing services, and Yang Xu at Anhui Agricultural University for the assistance in SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da Tian or Zhen Li.

Ethics declarations

Conflict of Interest

The authors declared that they have no conflicts of interest to this work. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 650 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Tian, D., Zhang, X. et al. The Regulation of Phosphorus Release by Penicillium chrysogenum in Different Phosphate via the TCA Cycle and Mycelial Morphology. J Microbiol. 61, 765–775 (2023). https://doi.org/10.1007/s12275-023-00072-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-023-00072-2

Keywords

Navigation