Skip to main content
Log in

Pathogenomics of Streptococcus ilei sp. nov., a newly identified pathogen ubiquitous in human microbiome

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Viridans group streptococci are a serious health concern because most of these bacteria cause life-threatening infections, especially in immunocompromised and hospitalized individuals. We focused on two alpha-hemolytic Streptococcus strains (I-G2 and I-P16) newly isolated from an ileostomy effluent of a colorectal cancer patient. We examined their pathogenic potential by investigating their prevalence in human and assessing their pathogenicity in a mouse model. We also predicted their virulence factors and pathogenic features by using comparative genomic analysis and in vitro tests. Using polyphasic and systematic approaches, we identified the isolates as belonging to a novel Streptococcus species and designated it as Streptococcus ilei. Metagenomic survey based on taxonomic assignment of datasets from the Human Microbiome Project revealed that S. ilei is present in most human population and at various body sites but is especially abundant in the oral cavity. Intraperitoneal injection of S. ilei was lethal to otherwise healthy C57BL/6J mice. Pathogenomics and in vitro assays revealed that S. ilei possesses a unique set of virulence factors. In agreement with the in vivo and in vitro data, which indicated that S. ilei strain I-G2 is more pathogenic than strain I-P16, only the former displayed the streptococcal group A antigen. We here newly identified S. ilei sp. nov., and described its prevalence in human, virulence factors, and pathogenicity. This will help to prevent S. ilei strain misidentification in the future, and improve the understanding and management of streptococcal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Booijink, C.C.G.M., El-Aidy, S., Rajilić-Stojanović, M., Heilig, H.G.H.J., Troost, F.J., Smidt, H., Kleerebezem, M., De Vos, W.M., and Zoetendal, E.G. 2010. High temporal and inter-individual variation detected in the human ileal microbiota. Environ. Microbiol. 12, 3213–3227.

    Article  CAS  Google Scholar 

  • Brown, E.M., Sadarangani, M., and Finlay, B.B. 2013. The role of the immune system in governing host-microbe interactions in the intestine. Nat. Immunol. 14, 660–667.

    Article  CAS  Google Scholar 

  • Chen, I.M.A., Chu, K., Palaniappan, K., Ratner, A., Huang, J., Huntemann, M., Hajek, P., Ritter, S., Varghese, N., Seshadri, R., et al. 2021. The IMG/M data management and analysis system v.6.0: new tools and advanced capabilities. Nucleic Acids Res. 49, D751–D763.

    Article  CAS  Google Scholar 

  • Doron, S. and Snydman, D.R. 2015. Risk and safety of probiotics. Clin. Infect. Dis. 60, S129–S134.

    Article  Google Scholar 

  • Fitzgerald, J.R., Foster, T.J., and Cox, D. 2006. The interaction of bacterial pathogens with platelets. Nat. Rev. Microbiol. 4, 445–457.

    Article  CAS  Google Scholar 

  • Hakenbeck, R., Madhour, A., Denapaite, D., and Brückner, R. 2009. Versatility of choline metabolism and choline-binding proteins in Streptococcus pneumoniae and commensal streptococci. FEMS Microbiol. Rev. 33, 572–586.

    Article  CAS  Google Scholar 

  • Hamzeh-Cognasse, H., Damien, P., Chabert, A., Pozzetto, B., Cognasse, F., and Garraud, O. 2015. Platelets and infections - complex interactions with bacteria. Front. Immunol. 6, 82.

    Article  Google Scholar 

  • Henningham, A., Davies, M.R., Uchiyama, S., van Sorge, N.M., Lund, S., Chen, K.T., Walker, M.J., Cole, J.N., and Nizet, V. 2018. Virulence role of the GlcNAc side chain of the Lancefield cell wall carbohydrate antigen in Non-M1-serotype group A Streptococcus. mBio 9, e02294–17.

    Article  CAS  Google Scholar 

  • Hyun, D.W., Jeong, Y.S., Lee, J.Y., Sung, H., Lee, S.Y., Choi, J.W., Kim, H.S., Kim, P.S., and Bae, J.W. 2021. Description of Nocardioides piscis sp. nov., Sphingomonas piscis sp. nov. and Sphingomonas sinipercae sp. nov., isolated from the intestine of fish species Odontobutis interrupta (Korean spotted sleeper) and Siniperca scherzeri (leopard mandarin fish). J. Microbiol. 59, 552–562.

    Article  CAS  Google Scholar 

  • Jung, C.J., Yeh, C.Y., Hsu, R.B., Lee, C.M., Shun, C.T., and Chia, J.S. 2015. Endocarditis pathogen promotes vegetation formation by inducing intravascular neutrophil extracellular traps through activated platelets. Circulation 131, 571–581.

    Article  CAS  Google Scholar 

  • Kerrigan, S.W. 2015. The expanding field of platelet-bacterial interconnections. Platelets 26, 293–301.

    Article  CAS  Google Scholar 

  • Lancefield, R.C. 1933. A serological differentiation of human and other groups of hemolytic streptococci. J. Exp. Med. 57, 571–595.

    Article  CAS  Google Scholar 

  • Liu, B., Zheng, D., Jin, Q., Chen, L., and Yang, J. 2019. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 47, D687–D692.

    Article  CAS  Google Scholar 

  • Lloyd-Price, J., Mahurkar, A., Rahnavard, G., Crabtree, J., Orvis, J., Hall, A.B., Brady, A., Creasy, H.H., McCracken, C., Giglio, M.G., et al. 2017. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550, 61–66.

    Article  CAS  Google Scholar 

  • Mann, B., Orihuela, C., Antikainen, J., Gao, G., Sublett, J., Korhonen, T.K., and Tuomanen, E. 2006. Multifunctional role of choline binding protein G in pneumococcal pathogenesis. Infect. Immun. 74, 821–829.

    Article  CAS  Google Scholar 

  • Mende, D.R., Letunic, I., Huerta-Cepas, J., Li, S.S., Forslund, K., Sunagawa, S., and Bork, P. 2017. proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes. Nucleic Acids Res. 45, D529–D534.

    Article  CAS  Google Scholar 

  • Menzel, P., Ng, K.L., and Krogh, A. 2016. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257.

    Article  CAS  Google Scholar 

  • MIDI. 1999. Sherlock Microbial Identification System Operating Manual, version 3.0. MIDI Inc., Newark, Delaware, USA.

    Google Scholar 

  • Mitchell, J. 2011. Streptococcus mitis: walking the line between commensalism and pathogenesis. Mol. Oral. Microbiol. 26, 89–98.

    Article  CAS  Google Scholar 

  • Mitchell, T.J. 2003. The pathogenesis of streptococcal infections: from tooth decay to meningitis. Nat. Rev. Microbiol. 1, 219–230.

    Article  CAS  Google Scholar 

  • Moreillon, P., Que, Y.A., and Bayer, A.S. 2002. Pathogenesis of streptococcal and staphylococcal endocarditis. Infect. Dis. Clin. North Am. 16, 297–318.

    Article  Google Scholar 

  • Nguyen, C.T., Park, S.S., and Rhee, D.K. 2015. Stress responses in Streptococcus species and their effects on the host. J. Microbiol. 53, 741–749.

    Article  CAS  Google Scholar 

  • Park, W. 2018. Gut microbiomes and their metabolites shape human and animal health. J. Microbiol. 56, 151–153.

    Article  Google Scholar 

  • Parte, A.C., Sardà Carbasse, J., Meier-Kolthoff, J.P., Reimer, L.C., and Göker, M. 2020. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 70, 5607–5612.

    Article  Google Scholar 

  • Que, Y.A. and Moreillon, P. 2011. Infective endocarditis. Nat. Rev. Cardiol. 8, 322–336.

    Article  CAS  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, Delaware, USA.

    Google Scholar 

  • Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. 2009. Introducing mothur: open-source, platform- independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541.

    Article  CAS  Google Scholar 

  • Shelburne, S.A. 3rd, Lasky, R.E., Sahasrabhojane, P., Tarrand, J.T., and Rolston, K.V.I. 2014. Development and validation of a clinical model to predict the presence of β-lactam resistance in viridans group streptococci causing bacteremia in neutropenic cancer patients. Clin. Infect. Dis. 59, 223–230.

    Article  CAS  Google Scholar 

  • Sittipo, P., Lobionda, S., Lee, Y.K., and Maynard, C.L. 2018. Intestinal microbiota and the immune system in metabolic diseases. J. Microbiol. 56, 154–162.

    Article  CAS  Google Scholar 

  • Somma, F., Castagnola, R., Bollino, D., and Marigo, L. 2011. Oral inflammatory process and general health. Part 2: How does the periapical inflammatory process compromise general health?. Eur. Rev. Med. Pharmacol. Sci. 15, 35–51.

    CAS  PubMed  Google Scholar 

  • Teles, C., Smith, A., and Lang, S. 2012. Antibiotic modulation of the plasminogen binding ability of viridans group streptococci. Antimicrob. Agents Chemother. 56, 458–463.

    Article  CAS  Google Scholar 

  • The NIH HMP Working Group. 2009. The NIH Human Microbiome Project. Genome Res. 19, 2317–2323.

    Article  Google Scholar 

  • van den Bogert, B., de Vos, W.M., Zoetendal, E.G., and Kleerebezem, M. 2011. Microarray analysis and barcoded pyrosequencing provide consistent microbial profiles depending on the source of human intestinal samples. Appl. Environ. Microbiol. 77, 2071–2080.

    Article  CAS  Google Scholar 

  • van Sorge, N.M., Cole, J.N., Kuipers, K., Henningham, A., Aziz, R.K., Kasirer-Friede, A., Lin, L., Berends, E.T.M., Davies, M.R., Dougan, G., et al. 2014. The classical lancefield antigen of group a Streptococcus is a virulence determinant with implications for vaccine design. Cell Host Microbe 15, 729–740.

    Article  CAS  Google Scholar 

  • Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.

    Article  CAS  Google Scholar 

  • Zoetendal, E.G., Raes, J., van den Bogert, B., Arumugam, M., Booijink, C.C., Troost, F.J., Bork, P., Wels, M., de Vos, W.M., and Kleerebezem, M. 2012. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 6, 1415–1426.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Aharon Oren (The Hebrew University of Jerusalem, Israel) for etymological advice. We thank Dr. Sang Sun Yoon and Dr. Junhyeok Go for technical advice of in vitro cell line experiments. This work was supported by grants from the Mid-career Researcher Program (NRF-2020R1A2-C3012797) and Science Research Centre grant (NRF-2018R-1A5A1025077) funded by the Ministry of Science and ICT, and Basic Science Research Program (NRF-2019R1A6A3A-01096031) funded by the Ministry of Education through the National Research Foundation of Korea (NRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Woo Bae.

Ethics declarations

The study was approved by the Institutional Animal Care and Use Committee of Kyung Hee University (Permit number: KHP-2014-02-4) and complied with guidelines of the Committee. All animal experiments were approved by and performed in accordance with the guidelines of the committee for the care and use of laboratory animals of the College of Pharmacy, Kyung Hee University (KHP-2014-02-1-4).

Additional information

Conflict of Interest

The authors declare that there are no conflicts of interest.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Supplemental material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyun, DW., Lee, JY., Kim, MS. et al. Pathogenomics of Streptococcus ilei sp. nov., a newly identified pathogen ubiquitous in human microbiome. J Microbiol. 59, 792–806 (2021). https://doi.org/10.1007/s12275-021-1165-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-1165-x

Keywords

Navigation