Skip to main content
Log in

Mucilaginibacter limnophilus sp. nov., isolated from a lake

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A polyphasic taxonomy approach was used to characterize strain YBJ-36T, isolated from a freshwater lake in Taiwan. Phylogenetic analyses, based on 16S rRNA gene sequences and coding sequences of an up-to-date bacterial core gene set (92 protein clusters), indicated that strain YBJ-36T formed a phylogenetic lineage in the genus Mucilaginibacter. 16S rRNA gene sequence similarity indicated that strain YBJ-36T is closely related to species within the genus Mucilaginibacter (93.8–97.8% sequence similarity) and is most similar to Mucilaginibacter fluminis TTM-2T (97.8%), followed by Mucilaginibacter roseus TTM-1T (97.2%). Microbiological analyses demonstrated that strain YBJ-36T is Gram-negative, aerobic, non-motile, rod-shaped, surrounded by a thick capsule, and forms pink-colored colonies. Strain YBJ-36T grew between 20–40°C (optimal range, 35–37°C), pH 5.5–7.0 (optimal pH of 6) and 0–2% NaCl (optimal concentration, 0.5%). The predominant fatty acids of strain YBJ-36T are iso-C15:0 and summed feature 3 (C16:1ω7c and/or C16:1ω6c), the major polar lipid is phosphatidylethanolamine, the major polyamine is homospermidine, and the major isoprenoid quinone is MK-7. The draft genome is approximately 4.63 Mb in size with a G+C content of 42.8 mol%. Strain YBJ-36T exhibited less than 35% DNA-DNA relatedness with Mucilaginibacter fluminis TTM-2T and Mucilaginibacter roseus TTM-1T. Based on phenotypic and genotypic properties and phylogenetic inference, strain YBJ-36T should be classified in a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter limnophilus sp. nov. is proposed. The type strain is YBJ-36T (= BCRC 81056T = KCTC 52811T = LMG 30058T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anzai, Y., Kudo, Y., and Oyaizu, H. 1997. The phylogeny of genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int. J. Syst. Bacteriol. 47, 249–251.

    CAS  PubMed  Google Scholar 

  • Aydogan, E.L., Busse, H.J., Moser, G., Müller, C., Kämpfer, P., and Glaeser, S.P. 2017. Proposal of Mucilaginibacter galii sp. nov. isolated from leaves of Galium album. Int. J. Syst. Evol. Microbiol. 67, 1318–1326.

    CAS  PubMed  Google Scholar 

  • Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., et al. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9, 75.

    PubMed  PubMed Central  Google Scholar 

  • Baik, K.S., Park, S.C., Kim, E.M., Lim, C.H., and Seong, C.N. 2010. Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. Int. J. Syst. Evol. Microbiol. 60, 134–139.

    CAS  PubMed  Google Scholar 

  • Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardet, J.F., Nakagawa, Y., and Holmes, B. 2002. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int. J. Syst. Evol. Microbiol. 52, 1049–1070.

    CAS  PubMed  Google Scholar 

  • Beveridge, T.J., Lawrence, J.R., and Murray, R.G.E. 2007. Sampling and staining for light microscopy, pp. 19–33. In Beveridge, T.J., Breznak, J.A., Marzluf, G.A., Schmidt, T.M., Snyder, L.R., et al. (eds.). Methods for General and Molecular Bacteriology, 3rd ed, American Society for Microbiology, Washington, DC, USA.

    Google Scholar 

  • Bowman, J.P. 2000. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int. J. Syst. Evol. Microbiol. 50, 1861–1868.

    CAS  PubMed  Google Scholar 

  • Breznak, J.A. and Costilow, R.N. 2007. Physicochemical factors in growth, pp. 309–329. In Beveridge, T.J., Breznak, J.A., Marzluf, G.A., Schmidt, T.M., Snyder, L.R., et al. (eds.). Methods for General and Molecular Bacteriology, 3rd ed, American Society for Microbiology, Washington, DC, USA.

    Google Scholar 

  • Busse, H.J. and Auling, G. 1988. Polyamine pattern as chemotaxonomic marker within the Proteobacteria. Syst. Appl. Microbiol. 11, 1–8.

    CAS  Google Scholar 

  • Busse, H.J., Bunka, S., Hensel, A., and Lubitz, W. 1997. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int. J. Syst. Bacteriol. 47, 698–708.

    CAS  Google Scholar 

  • Chen, W.M., Chen, Y.L., and Sheu, S.Y. 2016. Mucilaginibacter roseus sp. nov., isolated from a freshwater river. Int. J. Syst. Evol. Microbiol. 66, 1112–1118.

    CAS  PubMed  Google Scholar 

  • Chen, W.M., Hsieh, T.Y., and Sheu, S.Y. 2018. Mucilaginibacter amnicola sp. nov., isolated from a freshwater creek MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price. Int. J. Syst. Evol. Microbiol. 68, 394–401.

    CAS  PubMed  Google Scholar 

  • Chen, W.M., Laevens, S., Lee, T.M., Coenye, T., de Vos, P., Mergeay, M., and Vandamme, P. 2001. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int. J. Syst. Evol. Microbiol. 51, 1729–1735.

    CAS  PubMed  Google Scholar 

  • Chen, X.Y., Zhao, R., Tian, Y., Kong, B.H., Li, X.D., Chen, Z.L., and Li, Y.H. 2014. Mucilaginibacter polytrichastri sp. nov., isolated from a moss (Polytrichastrum formosum), and emended description of the genus Mucilaginibacter. Int. J. Syst. Evol. Microbiol. 64, 1395–1400.

    CAS  PubMed  Google Scholar 

  • Collins, M.D. 1994. Isoprenoid quinones, pp. 265–309. In Goodfellow, M. and O’Donnell, A.G. (eds.), Chemical Methods in Prokaryotic Systematics, Wiley, Chichester, England.

    Google Scholar 

  • Embley, T.M. and Wait, R. 1994. Structural lipids of eubacteria, pp. 121–161. In Goodfellow, M. and O’Donnell, A.G. (eds.), Chemical Methods in Prokaryotic Systematics, Wiley, Chichester, England.

    Google Scholar 

  • Ewels, P., Magnusson, M., Lundin, S., and Käller, M. 2016. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ezaki, T., Hashimoto, Y., and Yabuuchi, E. 1989. Fluorometric DNA-DNA hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39, 224–229.

    Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    CAS  PubMed  Google Scholar 

  • Goris, J., Konstantinidis, K.T., Klappenbach, J.A., Coenye, T., Vandamme, P., and Tiedje, J.M. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57, 81–91.

    CAS  PubMed  Google Scholar 

  • Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  • Huerta-Cepas, J., Forslund, K., Coelho, L.P., Szklarczyk, D., Jensen, L.J., von Mering, C., and Bork, P. 2017. Fast genome-wide functional annotation through orthology assignment by eggNOGmapper. Mol. Biol. Evol. 34, 2115–2122.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huerta-Cepas, J., Szklarczyk, D., Forslund, K., Cook, H., Heller, D., Walter, M.C., Rattei, T., Mende, D.R., Sunagawa, S., Kuhn, M., et al. 2016. eggNOG4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293.

    CAS  PubMed  Google Scholar 

  • Hwang, Y.M., Baik, K.S., and Seong, C.N. 2014. Mucilaginibacter defluvii sp. nov., isolated from a dye wastewater treatment facility. Int. J. Syst. Evol. Microbiol. 64, 565–571.

    CAS  PubMed  Google Scholar 

  • Jiang, F., Dai, J., Wang, Y., Xue, X., Xu, M., Guo, Y., Li, W., Fang, C., and Peng, F. 2012. Mucilaginibacter soli sp. nov., isolated from Arctic tundra soil. Int. J. Syst. Evol. Microbiol. 62, 1630–1635.

    CAS  PubMed  Google Scholar 

  • Kim, J.H., Kang, S.J., Jung, Y.T., Oh, T.K., and Yoon, J.H. 2012. Mucilaginibacter lutimaris sp. nov., isolated from a tidal flat sediment. Int. J. Syst. Evol. Microbiol. 62, 515–519.

    CAS  PubMed  Google Scholar 

  • Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, USA.

    Google Scholar 

  • Kluge, A.G. and Farris, F.S. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool. 18, 1–32.

    Google Scholar 

  • Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

    CAS  PubMed  Google Scholar 

  • Lee, I., Kim, Y.O., Park, S.C., and Chun, J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66, 1100–1103.

    CAS  PubMed  Google Scholar 

  • Ludwig, W., Euzéby, J., and Whitman, W.B. 2011. Taxonomic outlines of the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes, pp. 21–24. In Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol. 4, Williams & Wilkins, Baltimore, USA.

    Google Scholar 

  • Meier-Kolthoff, J.P., Auch, A.F., Klenk, H.P., and Göker, M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14, 60.

    PubMed  PubMed Central  Google Scholar 

  • Na, S.I., Kim, Y.O., Yoon, S.H., Ha, S.M., Baek, I., and Chun, J. 2018. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol. 56, 280–285.

    CAS  PubMed  Google Scholar 

  • Nawrocki, E.P. and Eddy, S.R. 2007. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput. Biol. 3, e56.

    PubMed  PubMed Central  Google Scholar 

  • Nokhal, T.H. and Schlegel, H.G. 1983. Taxonomic study of Paracoccus denitrificans. Int. J. Syst. Bacteriol. 33, 26–37.

    Google Scholar 

  • Overbeek, R., Olson, R., Pusch, G.D., Olsen, G.J., Davis, J.J., Disz, T., Edwards, R.A., Gerdes, S., Parrello, B., Shukla, M., et al. 2014. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42, D206–D214.

    CAS  PubMed  Google Scholar 

  • Pankratov, T.A., Tindall, B.J., Liesack, W., and Dedysh, S.N. 2007. Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int. J. Syst. Evol. Microbiol. 57, 2349–2354.

    CAS  PubMed  Google Scholar 

  • Parte, A.C. 2018. LPSN-list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int. J. Syst. Evol. Microbiol. 68, 1825–1829.

    PubMed  Google Scholar 

  • Powers, E.M. 1995. Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl. Environ. Microbiol. 61, 3756–3758.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reichenbach, H. 1992. The order Cytophagales, pp. 3631–3675. In Balows, A., Trüper, H.G., Dworkin, M., Harder, W., Schleifer, K.H., et al. (eds.). The Prokaryotes, a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. Springer, New York, NY, USA.

    Google Scholar 

  • Richter, M. and Rosselló-Móra, R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106, 19126–19131.

    CAS  PubMed  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for constructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc. Newark, DE, USA.

    Google Scholar 

  • Schlegel, H.G., Lafferty, R., and Krauss, I. 1970. The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch. Microbiol. 71, 283–294.

    CAS  Google Scholar 

  • Schmidt, K., Connor, A., and Britton, G. 1994. Analysis of pigments: carotenoids and related polyenes, pp. 403–461. In Goodfellow, M. and O’Donnell, A.G. (eds.). Chemical Methods in Prokaryotic Systematics, Wiley, Chichester, England.

    Google Scholar 

  • Seemann, T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069.

    CAS  PubMed  Google Scholar 

  • Sheu, S.Y., Chen, Y.L., and Chen, W.M. 2016. Mucilaginibacter fluminis sp. nov., isolated from a freshwater river. Int. J. Syst. Evol. Microbiol. 66, 4567–4574.

    CAS  PubMed  Google Scholar 

  • Spiekermann, P., Rehm, B.H.A., Kalscheuer, R., Baumeister, D., and Steinbuchel, A. 1999. A sensitive, viable-colony staining method using nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch. Microbiol. 171, 73–80.

    CAS  PubMed  Google Scholar 

  • Steyn, P.L., Segers, P., Vancanneyt, M., Sandra, P., Kersters, K., and Joubert, J.J. 1998. Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. Proposal of the family Sphingobacteriaceae fam. nov. Int. J. Syst. Bacteriol. 48, 165–177.

    CAS  PubMed  Google Scholar 

  • Tindall, B.J., Sikorski, J., Smibert, R.A., and Krieg, N.R. 2007. Phenotypic characterization and the principles of comparative systematics, pp. 330–393. In Reddy, C.A., Beveridge, T.J., Breznak, J.A., Marzluf, G.A., Schmidt, T.M., and Snyder, L.R. (eds.), Methods for General and Molecular Bacteriology, 3rd, American Society for Microbiology, Washington, DC, USA.

    Google Scholar 

  • Urai, M., Aizawa, T., Nakagawa, Y., Nakajima, M., and Sunairi, M. 2008. Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. Int. J. Syst. Evol. Microbiol. 58, 2046–2050.

    CAS  PubMed  Google Scholar 

  • Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., and Kandler, O. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics.Int. J. Syst. Bacteriol. 37, 463–464.

    Google Scholar 

  • Weisburg, W.G., Burns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen, C.M., Tseng, C.S., Cheng, C.Y., and Li, Y.K. 2002. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol. Appl. Biochem. 35, 213–219.

    CAS  PubMed  Google Scholar 

  • Yoon, J.H., Kang, S.J., Park, S., and Oh, T.K. 2012. Mucilaginibacter litoreus sp. nov., isolated from marine sand. Int. J. Syst. Evol. Microbiol. 62, 2822–2827.

    PubMed  Google Scholar 

  • Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Ming Chen.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheu, SY., Xie, YR. & Chen, WM. Mucilaginibacter limnophilus sp. nov., isolated from a lake. J Microbiol. 57, 967–975 (2019). https://doi.org/10.1007/s12275-019-9146-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-9146-z

Keywords

Navigation