Skip to main content
Log in

Ruegeria alba sp. nov., Isolated from a Tidal Flat Sediment

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A novel Gram-staining-negative, aerobic, rod-shaped, and white-colored bacterium designated as 1NDH52CT was isolated from a tidal flat sediment and its taxonomic position was determined using a polyphasic taxonomic approach. The microorganism was found to grow at 10–37 °C, pH 6.0–9.0, and in the presence of 0–2% (w/v) NaCl, and to hydrolyze gelatin and aesculin. The major cellular fatty acid of strain 1NDH52CT was summed feature 8 (C19:1 ω7c and/or C18:1 ω6c); the polar lipids comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an aminolipid, and a lipid; the respiratory quinone was ubiquinone-10. The 16S rRNA gene-based phylogenetic analysis showed that strain 1NDH52CT was closely related to members of the genus Ruegeria with the identity of 98.2% to the type strain Ruegeria pomeroyi DSM 15711T. The genome DNA G + C content of strain 1NDH52CT was 63.6%. The phylogenomic analysis indicated that strain 1NDH52CT formed an independent branch distinct from reference type strains of species within this genus. Digital DNA–DNA hybridization and average nucleotide identity values between strain 1NDH52CT and reference strains were, respectively, 19.1–41.5% and 78.3–91.3%, which are far below the thresholds of 70% and 95–96% for species definition, respectively, indicating that strain 1NDH52CT represents a novel genospecies of the genus Ruegeria. Based on phenotypic and genotypic data, strain 1NDH52CT is concluded to represent a novel species of the genus Ruegeria, for which the name Ruegeria alba sp. nov., is proposed. The type strain of the species is 1NDH52CT (= GDMCC 1.2382T = KCTC 82664T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data generated during this study are publicly available from the GenBank database at www.ncbi.nlm.nih.gov/nuccore/OM570255.1/ and www.ncbi.nlm.nih.gov/nuccore/JAKOEM000000000.1/

Code Availability

Not applicable.

References

  1. Uchino Y, Hirata A, Yokota A, Sugiyama J (1998) Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 44:201–210. https://doi.org/10.2323/jgam.44.201

    Article  CAS  PubMed  Google Scholar 

  2. Wirth JS, Whitman WB (2019) Bergey’s manual of systematics of archaea and bacteria. In: Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P, Rainey FA, Whitman WB (eds) Ruegeria. John Wiley & Sons, Inc. in association with Bergey’s Manual Trust, New York, pp 1–25

    Google Scholar 

  3. Liang KYH, Orata FD, Boucher YF, Case RJ (2021) Roseobacters in a sea of poly- and paraphyly: whole genome-based taxonomy of the family Rhodobacteraceae and the proposal for the split of the “Roseobacter clade” into a novel family Roseobacteraceae fam nov. Front Microbiol. https://doi.org/10.3389/fmicb.2021.683109

    Article  PubMed  PubMed Central  Google Scholar 

  4. Oren A, Garrity GM (2021) Valid publication of new names and new combinations effectively published outside the IJSEM. https://doi.org/10.1099/ijsem.0.005096

  5. Yi H, Lim YW, Chun J (2007) Taxonomic evaluation of the genera Ruegeria and Silicibacter: a proposal to transfer the genus Silicibacter Petursdottir and Kristjansson 1999 to the genus Ruegeria Uchino et al. 1999. Int J Syst Evol Microbiol 57:815–819. https://doi.org/10.1099/ijs.0.64568-0

    Article  CAS  PubMed  Google Scholar 

  6. Wirth JS, Whitman WB (2018) Phylogenomic analyses of a clade within the roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal of six novel genera. Int J Syst Evol Microbiol 68:2393–2411. https://doi.org/10.1099/ijsem.0.002833

    Article  CAS  PubMed  Google Scholar 

  7. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M (2020) Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 11:468. https://doi.org/10.3389/fmicb.2020.00468

    Article  PubMed  PubMed Central  Google Scholar 

  8. Reisch CR, Crabb WM, Gifford SM, Teng Q, Stoudemayer MJ, Moran MA, Whitman WB (2013) Metabolism of dimethylsulphoniopropionate by Ruegeria pomeroyi DSS-3. Mol Microbiol 89:774–791. https://doi.org/10.1111/mmi.12314

    Article  CAS  PubMed  Google Scholar 

  9. Achbergerova L, Nahalka J (2014) Degradation of polyphosphates by polyphosphate kinases from Ruegeria pomeroyi. Biotechnol Lett 36:2029–2035. https://doi.org/10.1007/s10529-014-1566-6

    Article  CAS  PubMed  Google Scholar 

  10. Pei T, Liu Y, Du J, Huang K, Deng MR, Zhu H (2021) Croceicoccus gelatinilyticus sp. nov., isolated from a tidal flat sediment. Arch Microbiol 204:93. https://doi.org/10.1007/s00203-021-02703-x

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y, Pei T, Du J, Deng M-R, Zhu H (2021) Inhella proteolytica sp. nov. and Inhella gelatinilytica sp. nov., two novel species of the genus Inhella isolated from aquaculture water. Arch Microbiol 203:3191–3200. https://doi.org/10.1007/s00203-021-02264-z

    Article  CAS  PubMed  Google Scholar 

  12. Du J, Liu Y, Pei T, Deng MR, Zhu H (2021) Salipiger mangrovisoli sp. nov., isolated from mangrove soil and the proposal for the reclassification of Paraphaeobacter pallidus as Salipiger pallidus comb. Nov. Int J Syst Evol Microbiol 71:004892. https://doi.org/10.1099/ijsem.0.004892

    Article  CAS  Google Scholar 

  13. Liu Y, Du J, Zhang J, Lai Q, Shao Z, Zhu H (2020) Devosia marina sp. nov., isolated from deep seawater of the South China Sea, and reclassification of Devosia subaequoris as a later heterotypic synonym of Devosia soli. Int J Syst Evol Microbiol 70:3062–3068. https://doi.org/10.1099/ijsem.0.004130

    Article  CAS  PubMed  Google Scholar 

  14. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241. https://doi.org/10.1016/0167-7012(84)90018-6

    Article  CAS  Google Scholar 

  15. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230. https://doi.org/10.1099/00221287-100-2-221

    Article  CAS  PubMed  Google Scholar 

  16. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534. https://doi.org/10.1093/molbev/msaa015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522. https://doi.org/10.1093/molbev/msx281

    Article  CAS  PubMed  Google Scholar 

  24. Auch AF, von Jan M, Klenk H-P, Göker M (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134. https://doi.org/10.4056/sigs.531120

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S (2018) High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9:5114. https://doi.org/10.1038/s41467-018-07641-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I, Chun J (2018) UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285. https://doi.org/10.1007/s12275-018-8014-6

    Article  CAS  PubMed  Google Scholar 

  27. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbial Today 33:152–155

    Google Scholar 

  28. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464. https://doi.org/10.1099/00207713-37-4-463

    Article  Google Scholar 

  29. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  PubMed Central  Google Scholar 

  30. Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882. https://doi.org/10.1128/AEM.67.7.2873-2882.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gonzalez JM, Covert JS, Whitman WB, Henriksen JR, Mayer F, Scharf B, Schmitt R, Buchan A, Fuhrman JA, Kiene RP, Moran MA (2003) Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 53:1261–1269. https://doi.org/10.1099/ijs.0.02491-0

    Article  CAS  PubMed  Google Scholar 

  32. Huo YY, Xu XW, Li X, Liu C, Cui HL, Wang CS, Wu M (2011) Ruegeria marina sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 61:347–350. https://doi.org/10.1099/ijs.0.022400-0

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was jointly supported by the Key Realm R&D Program of Guangdong Province (2020B0202080005), the Science and Technology Program of Guangdong Province (2021B1212050022), and the GDAS' Project of Science and Technology Development (2020GDASYL-20200103028).

Author information

Authors and Affiliations

Authors

Contributions

JD and HZ contributed to conceptualization and supervision and Validation; JD contributed to data curation; formal analysis, visualization, and writing—original draft; JD, AL, and HZ contributed to funding acquisition; JD, YL, TP, AL, and HZ contributed to investigation; JD and YL contributed to methodology; YL contributed to software; JD, YL, and HZ contributed to writing—review & editing.

Corresponding author

Correspondence to Honghui Zhu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 750 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Liu, Y., Pei, T. et al. Ruegeria alba sp. nov., Isolated from a Tidal Flat Sediment. Curr Microbiol 79, 267 (2022). https://doi.org/10.1007/s00284-022-02968-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02968-5

Navigation