Skip to main content
Log in

Applications of different solvents and conditions for differential extraction of lipopolysaccharide in Gram-negative bacteria

  • Protocol
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Lipopolysaccharide (LPS) is one of the major components in the outer membrane of Gram-negative bacteria. However, its heterogeneity and variability in different bacteria and differentiation conditions make it difficult to extract all of the structural variants. We designed a solution to improve quality and biological activity of LPS extracted from various bacteria with different types of LPS, as compared to conventional methods. We introduced a quality index as a simple measure of LPS purity in terms of a degree of polysaccharide content detected by absorbance at 204 nm. Further experiments using gel electrophoresis, endotoxin test, and macrophage activation test were performed to evaluate the performance and reliability of a proposed ‘T-sol’ method and the biological effectiveness and character of the LPS products. We presented that the T-sol method had differential effects on extraction of a RAW 264.7 cell-activating LPS, which was effective in the macrophage activation with similar effects in stimulating the production of TNF-alpha. In conclusion, the T-sol method provides a simple way to improve quality and biological activity of LPS with high yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aderem, A. and Ulevitch, R.J. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787.

    Article  CAS  PubMed  Google Scholar 

  • Alexander, C. and Rietschel, E.T. 2001. Bacterial lipopolysaccharides and innate immunity. J. Endotoxin Res. 7, 167–202.

    CAS  PubMed  Google Scholar 

  • Al-Hendy, A., Toivanen, P., and Skurnik, M. 1991. Rapid method for isolation and staining of bacterial lipopolysaccharide. Microbiol. Immunol. 35, 331–333.

    Article  CAS  PubMed  Google Scholar 

  • Baltzer, L.H. and Mattsby-Baltzer, I. 1986. Heterogeneity of lipid A: structural determination by 13C and 31P NMR of lipid A fractions from the lipopolysaccharide of Escherichia coli 0111. Biochemistry 25, 3570–3575.

    Article  CAS  PubMed  Google Scholar 

  • Beceiro, A., Llobet, E., Aranda, J., Bengoechea, J.A., Doumith, M., Hornsey, M., Dhanji, H., Chart, H., Bou, G., Livermore, D.M., et al. 2011. Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob. Agents Chemother. 55, 3370–3379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi, Y., Mann, E., Whitfield, C., and Zimmer, J. 2018. Architecture of a channel-forming O-antigen polysaccharide ABC transporter. Nature 553, 361–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai, J. and Mumper, R.J. 2010. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15, 7313–7352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darveau, R.P. and Hancock, R.W. 1983. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella Typhimurium strains. J. Bacteriol. 155, 831–838.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, M.R. Jr. and Goldberg, J.B. 2012. Purification and visualization of lipopolysaccharide from Gram-negative bacteria by hot aqueous-phenol extraction. J. Vis. Exp. 63, e3916.

    Google Scholar 

  • Dixon, D.R. and Darveau, R.P. 2005. Lipopolysaccharide heterogeneity: innate host responses to bacterial modification of lipid A structure. J. Dent. Res. 84, 584–595.

    Article  CAS  PubMed  Google Scholar 

  • Eidhin, D.N. and Mouton, C. 1993. A rapid method for preparation of rough and smooth lipopolysaccharide from Bacteroides, Porphyromonas and Prevotella. FEMS Microbiol. Lett. 110, 133–138.

    Article  CAS  PubMed  Google Scholar 

  • Frank, S., Specter, S., Nowotny, A., and Friedman, H. 1977. Immunocycte stimulation in vitro by nontoxic bacterial lipopolysaccharide derivatives. J. Immunol. 119, 855–860.

    CAS  PubMed  Google Scholar 

  • Funatogawa, K., Matsuura, M., Nakano, M., Kiso, M., and Hasegawa, A. 1998. Relationship of structure and biological activity of monosaccharide lipid A analogues to induction of nitric oxide production by murine macrophage RAW264.7 cells. Infect. Immun. 66, 5792–5798.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galanos, C., Lüderitz, O., and Westphal, V.O. 1969. A new method for the extraction of R lipopolysaccharides. Eur. J. Biochem. 9, 245–249.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-del Portillo, F., Stein, M.A., and Finlay, B.B. 1997. Release of lipopolysaccharide from intracellular compartments containing Salmonella Typhimurium to vesicles of the host epithelial cell. Infect. Immun. 65, 24–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guha, M. and Mackman, N. 2001. LPS induction of gene expression in human monocytes. Cell Signal. 13, 85–94.

    Article  CAS  PubMed  Google Scholar 

  • Henderson, J.C., O’Brien, J.P., Brodbelt, J.S., and Trent, M.S. 2013. Isolation and chemical characterization of lipid A from Gram-negative bacteria. J. Vis. Exp. 79, e50623.

    Google Scholar 

  • Hickman, J. and Ashwell, G. 1966. Isolation of a bacterial lipopolysaccharide from Xanthomonas campestris containing 3-acetamido-3,6-dideoxy-d-galactose and d-rhamnose. J. Biol. Chem. 241, 1424–1428.

    CAS  PubMed  Google Scholar 

  • Hong, Y. and Reeves, P.R. 2014. Diversity of O-antigen repeat unit structures can account for the substantial sequence variation of Wzx translocases. J. Bacteriol. 196, 1713–1722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K., and Akira, S. 1999. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752.

    CAS  PubMed  Google Scholar 

  • Kaijanen, L., Paakkunainen, M., Pietarinen, S., Jernström, E., and Reinikainen, S.P. 2015. Ultraviolet detection of monosaccharides: multiple wavelength strategy to evaluate results after capillary zone electrophoretic separation. Int. J. Electrochem. Sci. 10, 2950–2961.

    CAS  Google Scholar 

  • Kalambhe, D.G., Zade, N.N., and Chaudhari, S.P. 2017. Evaluation of two different lipopolysaccharide extraction methods for purity and functionality of LPS. Int. J. Curr. Microbiol. App. Sci. 6, 1296–1302.

    Article  CAS  Google Scholar 

  • Kannenberg, E.L. and Carlson, R.W. 2001. Lipid A and O-chain modifications cause Rhizobium lipopolysaccharides to become hydrophobic during bacteroid development. Mol. Microbiol. 39, 379–392.

    Article  CAS  PubMed  Google Scholar 

  • Kasai, N. and Nowtny, A. 1967. Endotoxic glycolipid from a heptoseless mutant of Salmonella minnesota. J. Bacteriol. 94, 1824–1836.

    CAS  PubMed  PubMed Central  Google Scholar 

  • King, J.D., Berry, S., Clarke, B.R., Morris, R.J., and Whitfield, C. 2014. Lipopolysaccharide O antigen size distribution is determined by a chain extension complex of variable stoichiometry in Escherichia coli O9a. Proc. Natl. Acad. Sci. USA 111, 6407–6412.

    Article  CAS  PubMed  Google Scholar 

  • Khoddami, A., Wilkes, M.A., and Roberts, T.H. 2013. Techniques for analysis of plant phenolic compounds. Molecules 18, 2328–2375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, M., Utsugi, H., and Matsuda, K. 1986. Intensive UV absorption of dextrans and its application to enzyme reactions. Agric. Biol. Chem. 50, 1051–1053.

    CAS  Google Scholar 

  • Lerouge, I. and Vanderleyden, J. 2002. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol. Rev. 26, 17–47.

    Article  CAS  PubMed  Google Scholar 

  • Luchi, M. and Morrison, D.C. 2000. Comparable endotoxic properties of lipopolysaccharides are manifest in diverse clinical isolates of Gram-negative bacteria. Infect. Immun. 68, 1899–1904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukáčová, M., Barak, I., and Kazár, J. 2008. Role of structural variations of polysaccharide antigens in the pathogenicity of Gram-negative bacteria. Clin. Microbiol. Infect. 14, 200–206.

    Article  PubMed  Google Scholar 

  • Luke, N.R., Sauberan, S.L., Russo, T.A., Beanan, J.M., Olson, R., Loehfelm, T.W., Cox, A.D., Michael, F.St., Vinogradov, E.V., and Campagnari, A.A. 2010. Identification and characterization of a glycosyltransferase involved in Acinetobacter baumannii lipopolysaccharide core biosynthesis. Infect. Immun. 78, 2017–2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maldonado, R.F., Sá-Correia, I., and Valvano, M.A. 2016. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEM Microbiol. Rev. 40, 480–493.

    Article  CAS  Google Scholar 

  • Marshall, J.M. and Gunn, J.S. 2015. The O-antigen capsule of Salmonella enterica serovar Typhimurium facilitates serum resistance and surface expression of FliC. Infect. Immun. 83, 3946–3959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAleer, J.P., Zammit, D.J., Lefrançois, L., Rossi, R.J., and Vella, A.T. 2007. The lipopolysaccharide adjuvant effect on T cells relies on nonoverlapping contributions from the MyD88 pathway and CD11c+ cells. J. Immunol. 179, 6524–6535.

    Article  CAS  PubMed  Google Scholar 

  • Morrison, D.C. and Leive, L. 1975. Fractions of lipopolysaccharide from Escherichia coli O111:B4 prepared by two extraction procedures. J. Biol. Chem. 250, 2911–2919.

    CAS  PubMed  Google Scholar 

  • Nurminen, M. and Vaara, M. 1996. Methanol extracts LPS from deep rough bacteria. Biochem. Biophys. Res. Comm. 219, 441–444.

    Article  CAS  PubMed  Google Scholar 

  • Pamar, A.S. and Muschol, M. 2009. Hydration and hydrodynamic interactions of lysozyme: effects of chaotropic versus kosmotropic ions. Biophys. J. 97, 590–598.

    Article  CAS  Google Scholar 

  • Parameswaran, N. and Patial, S. 2010. Tumor necrosis factor-α signaling in macrophages. Crit. Rev. Eukaryot. Gene Expr. 20, 87–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perdomo, R. and Montero, V. 2006. Purification of E. coli 055:B5 lipopolysaccharides by size exclusion chromatography. Biotecnol. Apl. 23, 124–129.

    Google Scholar 

  • Pier, G.B. 2007. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int. J. Med. Microbiol. 297, 277–295.

    Article  PubMed  PubMed Central  Google Scholar 

  • Plevin, R.E., Knoll, M., McKay, M., Arbabi, S., and Cuschieri, J. 2016. The role of lipopolysaccharide structure in monocyte activation and cytokine secretion. Shock 45, 22–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Huffel, C.V., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., et al. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088.

    Article  CAS  PubMed  Google Scholar 

  • Raetz, C.R. and Whitfield, C. 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700.

    Article  CAS  PubMed  Google Scholar 

  • Raff, R.A. and Wheat, R.W. 1968. Carbohydrate composition of the phenol-soluble lipopolysaccharides of Citrobacter freundii. J. Bacteriol. 95, 2035–2043.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasool, O., Nnalue, N.A., and Jarstrand, C. 1992. The role of O-antigen polysaccharide in the activation of neutrophils by lipopolysaccharides of Salmonella species. Clin. Exp. Immunol. 90, 63–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuhs, B.L., Geller, D.P., Kim, J.S., Fox, J.E., Kolli, V.S.K., and Pueppke, S.G. 1998. Sinorhizobium fredii and Sinorhizobium meliloti produce structurally conserved lipopolysaccharides and strain-specific K antigens. Appl. Environ. Microbiol. 64, 4930–4938.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rezania, S., Amirmozaffari, N., Tabarraei, B., Jeddi-Tehrani, M., Zarei, O., Alizadeh, R., Masjedian, F., and Zarnani, A.H. 2011. Extraction, purification and characterization of lipopolysaccharide from Escherichia coli and Salmonella typhi. Avicenna J. Med. Biotechnol. 3, 3–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richie, D.L., Takeoka, K.T., Bojkovic, J., Metzger IV, L.E., Rath, C.M., Sawyer, W.S., Wei, J.R., and Dean, C.R. 2016. Toxic accumulation of LPS pathway intermediates underlies the requirement of LpxH for growth of Acinetobacter baumannii ATCC 19606. PLoS One 11, e0160918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rittig, M.G., Kaufmann, A., Robins, A., Shaw, B., Sprenger, H., Gemsa, D., Foulongne, V., Rouot, B., and Dornand, J. 2003. Smooth and rough lipopolysaccharide phenotypes of Brucella induce different intracellular trafficking and cytokine/chemokine release in human monocytes. J. Leukoc. Biol. 74, 1045–1055.

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld, Y. and Shai, Y. 2006. Lipopolysaccharide (endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. Biochim. Biophys. Acta 1758, 1513–1522.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, S., Ulett, G.C., Totsika, M., Phan, M.D., and Schembri, M.A. 2014. Role of capsule and O antigen in the virulence of uropathogenic Escherichia coli. PLoS One 9, e94786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawyer, W.H. and Puckridge, J. 1973. The dissociation of protein by chaotropic salts. J. Biol. Chem. 248, 8429–8433.

    CAS  PubMed  Google Scholar 

  • Saxena, R.K., Vallyathan, V., and Lewis, D.M. 2003. Evidence for lipopolysaccharide-induced differentiation of RAW264.7 murine macrophage cell line into dendritic like cells. J. Biosci. 28, 129–134.

    Article  CAS  PubMed  Google Scholar 

  • Schnaitman, C.A. and Klena, J.D. 1993. Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol. Rev. 57, 655–682.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada, M., Kadowaki, T., Taniguchi, Y., Inagawa, H., Okazaki, K., and Soma, G. 2012. The involvement of O-antigen polysaccharide in lipopolysaccharide in macrophage activation. Anticancer Res. 32, 2337–2342.

    CAS  PubMed  Google Scholar 

  • Silipo, A. and Molinaro, A. 2010. The diversity of the core oligosaccharide in lipopolysaccharides, pp. 69–99. In Wang X. and Quinn P. (eds.), Endotoxins: structure, function, and recognition. subcellular biochemistry, vol 53. Springer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Silipo, A., Molinaro, A., Cescutti, P., Bedini, E., Rizzo, R., Parrilli, M., and Lanzetta, R. 2005. Complete structural characterization of the lipid A fraction of a clinical strain of B. cepacia genomovar I lipopolysaccharide. Glycobiology 15, 561–570.

    Article  CAS  PubMed  Google Scholar 

  • Sonesson, A., Jantzen, E., Tangen, T., and Zähringer, U. 1994. Chemical characterization of lipopolysaccharides from Legionella feeleii, Legionella hackeliae, and Legionella jordanis. Microbiology 140, 2663–2671.

    Article  CAS  PubMed  Google Scholar 

  • Tirsoaga, A., Novikov, A., Adib-Conquy, M., Werts, C., Fitting, C., Cavaillon, J.M., and Caroff, M. 2007. Simple method for repurification of endotoxins for biological use. Appl. Environ. Microbiol. 73, 1803–1808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida, K. and Mizushima, S. 1987. A simple method for isolation of lipopolysaccharides from Pseudomonas aeruginosa and some other bacterial strains. Agric. Biol. Chem. 51, 3107–3114.

    CAS  Google Scholar 

  • Wang, Z., Wang, J., Ren, G., Li, Y., and Wang, X. 2015. Influence of core oligosaccharide of lipopolysaccharide to outer membrane behavior of Escherichia coli. Mar. Drugs 13, 3325–3339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westphal, V.O., Lüderitz, O., and Bister, F. 1952. Über die extraktion von bakterien mit phenol/wasser. Z. Naturforschg. 7b, 148–155.

    Article  CAS  Google Scholar 

  • Wu, E.L., Engström, O., Jo, S., Stuhlsatz, D., Yeom, M.S., Klauda, J.B., Widmalm, G., and Im, W. 2013. Molecular dynamics and NMR spectroscopy studies of E. coli lipopolysaccharide structure and dynamics. Biophys. J. 105, 1444–1455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (Grant number 2016R1A2B2014493 to YHK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Hak Kim.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, M.P., Tran, L.V.H., Namgoong, H. et al. Applications of different solvents and conditions for differential extraction of lipopolysaccharide in Gram-negative bacteria. J Microbiol. 57, 644–654 (2019). https://doi.org/10.1007/s12275-019-9116-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-9116-5

Keywords

Navigation