Skip to main content
Log in

Purification of the exopolysaccharide produced by Alteromonas infernus: identification of endotoxins and effective process to remove them

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Alteromonas infernus bacterium isolated from deep-sea hydrothermal vents can produce by fermentation a high molecular weight exopolysaccharide (EPS) called GY785. This EPS described as a new source of glycosaminoglycan-like molecule presents a great potential for pharmaceutical and biotechnological applications. However, this unusual EPS is secreted by a Gram-negative bacterium and can be therefore contaminated by endotoxins, in particular the lipopolysaccharides (LPS). Biochemical and chemical analyses of the LPS extracted from A. infernus membranes have shown the lack of the typical LPS architecture since 3-deoxy-d-manno-oct-2-ulopyranosonic acid (Kdo), glucosamine (GlcN), and phosphorylated monosaccharides were not present. Unlike for other Gram-negative bacteria, the results revealed that the outer membrane of A. infernus bacterium is most likely composed of peculiar glycolipids. Furthermore, the presence of these glycolipids was also detected in the EPS batches produced by fermentation. Different purification and chemical detoxification methods were evaluated to efficiently purify the EPS. Only the method based on a differential solubility of EPS and glycolipids in deoxycholate detergent showed the highest decrease in the endotoxin content. In contrast to the other tested methods, this new protocol can provide an effective method for obtaining endotoxin-free EPS without any important modification of its molecular weight, monosaccharide composition, and sulfate content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adam O, Vercellone A, Paul F, Monsan PF, Puzo G (1995) A nondegradative route for the removal of endotoxin from exopolysaccharides. Anal Biochem 225(2):321–327

    Article  CAS  PubMed  Google Scholar 

  • Anspach FB, Hilbeck O (1995) Removal of endotoxins by affinity sorbents. J Chromatogr A 711(1):81–92

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  • Bohin A, Bouchart F, Richet C, Kol O, Leroy Y, Timmerman P, Huet G, Bohin J-P, Zanetta J-P (2005) GC/MS identification and quantification of constituents of bacterial lipids and glycoconjugates obtained after methanolysis as heptafluorobutyrate derivatives. Anal Biochem 340(2):231–244

    Article  CAS  PubMed  Google Scholar 

  • Caroff M, Karibian D (2003) Structure of bacterial lipopolysaccharides. Carbohydr Res 338(23):2431–2447

    Article  CAS  PubMed  Google Scholar 

  • Chopin N, Sinquin C, Ratiskol J, Zykwinska A, Weiss P, Cerantola S, Le Bideau J, Colliec-Jouault S (2015) A direct sulfation process of a marine polysaccharide in ionic liquid. Biomed Res Int 2015:508656

    Article  PubMed  PubMed Central  Google Scholar 

  • Colliec-Jouault S, Zanchetta P, Helley D, Ratiskol J, Sinquin C, Fischer AM, Guezennec J (2004) Exopolysaccharides produced by bacteria isolated from deep-sea hydrothermal vents: new agents with therapeutic potential. Pathol Biol 52(3):127–130

    Article  CAS  PubMed  Google Scholar 

  • Delbarre-Ladrat C, Sinquin C, Lebellenger L, Zykwinska A, Colliec-Jouault S (2014) Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules. Front Chem 2:85–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Fensom AH, Gray GW (1969) The chemical composition of lipopolysaccharide of Pseudomonas aeruginosa. Biochem J 114:185–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galanos C, Luderitz O, Westphal O (1969) A new method for the extraction of R lipopolysaccharides. Eur J Biochem / FEBS 9(2):245–249

    Article  CAS  Google Scholar 

  • Garidel P, Rappolt M, Schromm AB, Howe J, Lohner K, Andra J, Koch MHJ, Brandenburg K (2005) Divalent cations affect chain mobility and aggregate structure of lipopolysaccharide from Salmonella minnesota reflected in a decrease of its biological activity. Biochim Biophys Acta-Biomembr 1715(2):122–131

    Article  CAS  Google Scholar 

  • Goldberg HA, Warner KJ (1997) The staining of acidic proteins on polyacrylamide gels: enhanced sensitivity and stability of “Stains-all” staining in combination with silver nitrate. Anal Biochem 251(2):227–233

    Article  CAS  PubMed  Google Scholar 

  • Guezennec J (2002) Deep-sea hydrothermal vents: a new source of innovative bacterial exopolysaccharides of biotechnological interest? J Ind Microbiol Biotechnol 29:204–208

    Article  CAS  PubMed  Google Scholar 

  • Heymann D, Ruiz-Velasco C, Chesneau J, Ratiskol J, Sinquin C, Colliec-Jouault S (2016) Anti-metastatic properties of a marine bacterial exopolysaccharide-based derivative designed to mimic glycosaminoglycans. Molecules 21(3):309

    Article  PubMed  Google Scholar 

  • Hou KC, Zaniewski R (1990) Endotoxin removal by anion-exchange polymeric matrix. Biotechnol Appl Biochem 12(3):315–324

    CAS  PubMed  Google Scholar 

  • Kachlany SC, Levery SB, Kim JS, Reuhs BL, Lion LW, Ghiorse WC (2001) Structure and carbohydrate analysis of the exopolysaccharide capsule of Pseudomonas putida G7. Environ Microbiol 3(12):774–784

  • Kamerling JP, Gerwig GJ, Vliegenthart JF, Clamp JR (1975) Characterization by gas-liquid chromatography-mass spectrometry and proton-magnetic-resonance spectroscopy of pertrimethylsilyl methyl glycosides obtained in the methanolysis of glycoproteins and glycopeptides. Biochem J 151(3):491–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawahara K, Seydel U, Matsuura M, Danbara H, Rietschel ET, Zahringer U (1991) Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis. FEBS Lett 292(1–2):107–110

    CAS  PubMed  Google Scholar 

  • Kawasaki S, Moriguchi R, Sekiya K, Nakai T, Ono E, Kume K, Kawahara K (1994) The cell-envelope structure of the lipopolysaccharide-lacking gram-negative bacterium Sphingomonas paucimobilis. J Bacteriol 176(2):284–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keck M, Gisch N, Moll H, Vorhoelter F-J, Gerth K, Kahmann U, Lissel M, Lindner B, Niehaus K, Hoist O (2011) Unusual outer membrane lipid composition of the gram-negative, lipopolysaccharide-lacking myxobacterium Sorangium cellulosum So ce56. J Biol Chem 286(15):12850–12859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kittelberger R, Hilbink F (1993) Sensitive silver-staining detection of bacterial lipopolysaccharides in polyacrylamide gels. J Biochem Biophys Methods 26(1):81–86

    Article  CAS  PubMed  Google Scholar 

  • Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 8(9):2435–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leone S, Molinaro A, Lindner B, Romano I, Nicolaus B, Parrilli M, Lanzetta R, Holst O (2006) The structures of glycolipids isolated from the highly thermophilic bacterium Thermus thermophilus Samu-SA1. Glycobiology 16(8):766–775

    Article  CAS  PubMed  Google Scholar 

  • Leone S, Molinaro A, Sturiale L, Garozzo D, Nazarenko EL, Gorshkova RP, Ivanova EP, Shevchenko LS, Lanzetta R, Parrilli M (2007) The outer membrane of the marine gram-negative bacterium Alteromonas addita is composed of a very short-chain lipopolysaccharide with a high negative charge density. Eur J Org Chem 2007(7):1113–1122

    Article  Google Scholar 

  • Liparoti V, Molinaro A, Sturiale L, Garozzo D, Nazarenko EL, Gorshkova RP, Ivanova EP, Shevcenko LS, Lanzetta R, Parrilli M (2006) Structural analysis of the deep rough lipopolysaccharide from gram negative bacterium Alteromonas macleodii ATCC 27126(T): the first finding of beta-Kdo in the inner core of lipopolysaccharides. Eur J Org Chem 20:4710–4716

    Article  Google Scholar 

  • Magalhaes PO, Lopes AM, Mazzola PG, Rangel-Yagui C, Penna TCV, Pessoa A Jr (2007) Methods of endotoxin removal from biological preparations: a review. J Pharm Pharm Sci 10(3):388–404

    PubMed  Google Scholar 

  • Maskell JP (1991) The resolution of bacteroides lipopolysaccharides by polyacrylamide gel electrophoresis. J Med Microbiol 34(5):253–257

    Article  CAS  PubMed  Google Scholar 

  • McIntire FC, Sievert HW, Barlow GH, Finley RA, Lee AY (1967) Chemical, physical, biological properties of a lipopolysaccharide from Escherichia coli K-235. Biochemist 6(8):2363–2372

    Article  CAS  Google Scholar 

  • Meissner J, Krauss JH, Jurgens UJ, Weckesser J (1988) Absence of a characteristic cell wall lipopolysaccharide in the phototrophic bacterium Chloroflexus aurantiacus. J Bacteriol 170(7):3213–3216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercaldi MP, Dams-Kozlowska H, Panilaitis B, Joyce AP, Kaplan DL (2008) Discovery of the dual polysaccharide composition of emulsan and the isolation of the emulsion stabilizing component. Biomacromolecules 9(7):1988–1996

    Article  CAS  PubMed  Google Scholar 

  • Merceron C, Portron S, Vignes-Colombeix C, Rederstorff E, Masson M, Lesoeur J, Sourice S, Sinquin C, Colliec-Jouault S, Weiss P, Vinatier C, Guicheux J (2012) Pharmacological modulation of human mesenchymal stem cell chondrogenesis by a chemically oversulfated polysaccharide of marine origin: potential application to cartilage regenerative medicine. Stem cells (Dayton, Ohio) 30(3):471–480

    Article  CAS  Google Scholar 

  • Pier GB, Sidberry HF, Zolyomi S, Sadoff JC (1978) Isolation and characterization of a high-molecular-weight polysaccharide from the slime of Pseudomonas aeruginosa. Infect Immun 22(3):908–918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rigouin C, Delbarre Ladrat C, Sinquin C, Colliec-Jouault S, Dion M (2009) Assessment of biochemical methods to detect enzymatic depolymerization of polysaccharides. Carbohydr Polym 76(2):279–284

    Article  CAS  Google Scholar 

  • Roger O, Kervarec N, Ratiskol J, Colliec-Jouault S, Chevolot L (2004) Structural studies of the main exopolysaccharide produced by the deep-sea bacterium Alteromonas infernus. Carbohydr Res 339:2371–2380

    Article  CAS  PubMed  Google Scholar 

  • Rougeaux H, Kervarec N, Pichon R, Guezennec J (1999) Structure of the exopolysaccharide of Vibrio diabolicus isolated from a deep-sea hydrothermal vent. Carbohydr Res 322(1–2):40–45

    Article  CAS  PubMed  Google Scholar 

  • Schultz CP, Wolf V, Lange R, Mertens E, Wecke J, Naumann D, Zahringer U (1998) Evidence for a new type of outer membrane lipid in oral spirochete Treponema denticola—functioning permeation barrier without lipopolysaccharides. J Biol Chem 273(25):15661–15666

    Article  CAS  PubMed  Google Scholar 

  • Shands JW, Chun PW (1980) The dispersion of gram-negative lipopolysaccharide by deoxycholate. Subunit molecular weight. J Biol Chem 255(3):1221–1226

    CAS  PubMed  Google Scholar 

  • Silipo A, Molinaro A, De Castro C, Ferrara R, Romano I, Nicolaus B, Lanzetta R, Parrilli M (2004) Structural analysis of a novel polysaccharide of the lipopolysaccharide-deficient extremophile gram-negative bacterium Thermus thermophilus HB8. Eur J Org Chem 24:5047–5054

    Article  Google Scholar 

  • Sledjeski DD, Weiner RM (1991) Hyphomonas spp., Shewanella spp., and other marine-bacteria lack heterogeneous (ladderlike) lipolysaccharides. Appl Environ Microbiol 57(7):2094–2096

  • Stenutz R, Weintraub A, Widmalm G (2006) The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol Rev 30(3):382–403

    Article  CAS  PubMed  Google Scholar 

  • Suwan J, Torelli A, Onishi A, Dordick JS, Linhardt RJ (2012) Addressing endotoxin issues in bioengineered heparin. Biotechnol Appl Biochem 59(6):420–428

    Article  CAS  PubMed  Google Scholar 

  • Tirsoaga A, El Hamidi A, Perry MB, Caroff M, Novikov A (2007) A rapid, small-scale procedure for the structural characterization of lipid A applied to Citrobacter and Bordetella strains: discovery of a new structural element. J Lipid Res 48(11):2419–2427

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Quinn PJ (2010) Endotoxins: lipopolysaccharides of gram-negative bacteria. Subcell Biochem 53:3–25

    Article  CAS  PubMed  Google Scholar 

  • Wilson MJ, Haggart CL, Gallagher SP, Walsh D (2001) Removal of tightly bound endotoxin from biological products. J Biotechnol 88(1):67–75

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z-X, Cong W-T, Ni M-W, Wang X, Ma W-D, Ye W-J, Jin L-T, Li X-K (2012) An improved silver stain for the visualization of lipopolysaccharides on polyacrylamide gels. Electrophoresis 33(7):1220–1223

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial supports were provided by the “BIOREGOS” network in Pays de la Loire area and “IONIBIOGEL” ANR Blanc SIMI 9 (ANR, Agence Nationale de la Recherche, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Colliec-Jouault.

Ethics declarations

Ethical statement

The authors accept the rules of good scientific practice and agree with the COPE guidelines followed by the Applied Microbiology and Biotechnology Journal.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, A.GL., Zykwinska, A., Sinquin, C. et al. Purification of the exopolysaccharide produced by Alteromonas infernus: identification of endotoxins and effective process to remove them. Appl Microbiol Biotechnol 101, 6597–6606 (2017). https://doi.org/10.1007/s00253-017-8364-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8364-8

Keywords

Navigation