Skip to main content
Log in

Antibiofilm effect of biofilm-dispersing agents on clinical isolates of Pseudomonas aeruginosa with various biofilm structures

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa, an opportunistic human pathogen, causes many biofilm-mediated chronic infections. In this study, biofilm structures of various clinical strains of P. aeruginosa isolated from hospitalized patients were examined and their influence on the biofilm-dispersing effects of chemicals was investigated. The clinical isolates formed structurally distinct biofilms that could be classified into three different groups: 1) mushroom-like, 2) thin flat, and 3) thick flat structures. A dispersion of these differently structured biofilms was induced using two biofilm-dispersing agents, anthranilate and sodium nitroprusside (SNP). Although both SNP and anthranilate could disperse all types of biofilms, the thick flat biofilms were dispersed less efficiently than the biofilms of other structures. This suggests that biofilm-dispersing agents have higher potency on the biofilms of porous structures than on densely packed biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banin, E., Brady, K.M., and Greenberg, E.P. 2006. Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl. Environ. Microbiol. 72, 2064–2069.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barraud, N., Schleheck, D., Klebensberger, J., Webb, J.S., Hassett, D.J., Rice, S.A., and Kjelleberg, S. 2009. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J. Bacteriol. 191, 7333–7342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chung, I.Y., Choi, K.B., Heo, Y.J., and Cho, Y.H. 2008. Effect of PEL exopolysaccharide on the wspF mutant phenotypes in Pseudomonas aeruginosa PA14. J. Microbiol. Biotechnol. 18, 1227–1234.

    PubMed  CAS  Google Scholar 

  • Colvin, K.M., Gordon, V.D., Murakami, K., Borlee, B.R., Wozniak, D.J., Wong, G.C.L., and Parsek, M.R. 2011. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog. 7, e1001264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Costerton, J.W., Stewart, P.S., and Greenberg, E.P. 1999. Bacterial biofilms: A common cause of persistent infections. Science 284, 1318–1322.

    Article  PubMed  CAS  Google Scholar 

  • Davies, D. 2003. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2, 114–122.

    Article  PubMed  CAS  Google Scholar 

  • Donlan, R.M. 2001. Biofilms and device-associated infections. Emerg. Infect. Dis. 7, 277–281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghafoor, A., Hay, I.D., and Rehm, B.H. 2011. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl. Environ. Microbiol. 77, 5238–5246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hancock, R.E. and Speert, D.P. 2000. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and impact on treatment. Drug Resist. Updat. 3, 247–255.

    Article  PubMed  CAS  Google Scholar 

  • Head, N.E. and Yu, H.W. 2004. Cross-sectional analysis of clinical and environmental isolates of Pseudomonas aeruginosa: Biofilm formation, virulence, and genome diversity. Infect. Immun. 72, 133–144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hickman, J.W., Tifrea, D.F., and Harwood, C.S. 2005. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc. Natl. Acad. Sci. USA 102, 14422–14427.

    Article  PubMed  CAS  Google Scholar 

  • Jung, K.J., Choi, Y., Ha, C., Shin, J.H., and Lee, J.H. 2010. Analysis of quorum sensing-related phenotypes of Pseudomonas aeruginosa clinical isolates. Korean J. Microbiol. 6, 240–247.

    Google Scholar 

  • Jung, Y.G., Choi, J., Kim, S.K., Lee, J.H., and Kwon, S. 2015. Embedded biofilm, a new biofilm model based on the embedded growth of bacteria. Appl. Environ. Microbiol. 81, 211–219.

    Article  PubMed  CAS  Google Scholar 

  • Karatan, E. and Watnick, P. 2009. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol. Mol. Biol. Rev. 73, 310–347.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, S.K. and Lee, J.H. 2016. Biofilm dispersion in Pseudomonas aeruginosa. J. Microbiol. 54, 71–85.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.K., Park, H.Y., and Lee, J.H. 2015. Anthranilate deteriorates the structure of Pseudomonas aeruginosa biofilms and antagonizes the biofilm-enhancing indole effect. Appl. Environ. Microbiol. 81, 2328–2338.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirisits, M.J. and Parsek, M.R. 2006. Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities? Cell. Microbiol. 8, 1841–1849.

    CAS  Google Scholar 

  • Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jorgensen, A., Molin, S., and Tolker-Nielsen, T. 2003. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol. Microbiol. 48, 1511–1524.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, C.G. and Anand, S.K. 1998. Significance of microbial biofilms in food industry: A review. Int. J. Food Microbiol. 42, 9–27.

    Article  PubMed  CAS  Google Scholar 

  • Lee, B., Haagensen, J.A., Ciofu, O., Andersen, J.B., Hoiby, N., and Molin, S. 2005. Heterogeneity of biofilms formed by nonmucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J. Clin. Microbiol. 43, 5247–5255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, X.H., Kim, S.K., and Lee, J.H. 2017. Anti-biofilm effects of anthranilate on a broad range of bacteria. Sci. Rep. 7, 8604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, X.H. and Lee, J.H. 2017. Antibiofilm agents: A new perspective for antimicrobial strategy. J. Microbiol. 55, 753–766.

    Article  PubMed  CAS  Google Scholar 

  • Lima, J., Alves, L.R., Paz, J., Rabelo, M.A., Maciel, M.A.V., and Morais, M.M.C. 2017. Analysis of biofilm production by clinical isolates of Pseudomonas aeruginosa from patients with ventilator-associated pneumonia. Rev. Bras. Ter. Intensiva 29, 310–316.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parsek, M.R. and Greenberg, E.P. 2005. Sociomicrobiology: The connections between quorum sensing and biofilms. Trends Microbiol. 13, 27–33.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, J.P., Pesci, E.C., and Iglewski, B.H. 1997. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol. 179, 5756–5767.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sauer, K., Camper, A.K., Ehrlich, G.D., Costerton, J.W., and Davies, D.G. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184, 1140–1154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sauer, K., Cullen, M.C., Rickard, A.H., Zeef, L.A., Davies, D.G., and Gilbert, P. 2004. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J. Bacteriol. 186, 7312–7326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schleheck, D., Barraud, N., Klebensberger, J., Webb, J.S., McDougald, D., Rice, S.A., and Kjelleberg, S. 2009. Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoS One 4, e5513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simm, R., Morr, M., Kader, A., Nimtz, M., and Romling, U. 2004. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol. Microbiol. 53, 1123–1134.

    Article  PubMed  CAS  Google Scholar 

  • Spiers, A.J., Bohannon, J., Gehrig, S.M., and Rainey, P.B. 2003. Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol. Microbiol. 50, 15–27.

    Article  PubMed  CAS  Google Scholar 

  • Willcox, M.D., Zhu, H., Conibear, T.C., Hume, E.B., Givskov, M., Kjelleberg, S., and Rice, S.A. 2008. Role of quorum sensing by Pseudomonas aeruginosa in microbial keratitis and cystic fibrosis. Microbiology 154, 2184–2194.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon-Hee Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SK., Li, XH., Hwang, HJ. et al. Antibiofilm effect of biofilm-dispersing agents on clinical isolates of Pseudomonas aeruginosa with various biofilm structures. J Microbiol. 56, 902–909 (2018). https://doi.org/10.1007/s12275-018-8336-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-8336-4

Keywords

Navigation