Skip to main content

Advertisement

Log in

Cure of tuberculosis using nanotechnology: An overview

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), a major health issue of the present era. The bacterium inhabits the host macrophage and other immune cells where it modulates the lysosome trafficking protein, hinders the formation of phagolysosome, and blocks the TNF receptor-dependent apoptosis of host macrophage/monocytes. Other limitations such as resistance to and low bioavailability and bio-distribution of conventional drugs aid to their high virulence and human mortality. This review highlights the use of nanotechnology-based approaches for drug formulation and delivery which could open new avenues to limit the pathogenicity of tuberculosis. Moreover phytochemicals, such as alkaloids, phenols, saponins, steroids, tannins, and terpenoids, extracted from terrestrial plants and mangroves seem promising against M. tuberculosis through different molecular mechanisms. Further understanding of the genomics and proteomics of this pathogenic microbe could also help overcome various research gaps in the path of developing a suitable therapy against tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi, E., Aval, S.F., Akbarzadeh, A., Milani, M., Nasrabadi, H.T., Joo, S.W., Hanifehpour, Y., Nejati-Koshki, K., and Pashaei-Asl, R. 2014. Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett. 9, 247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adebiyi, A., Ayo, R., Bello, I., and Habila, J. 2015. Phytochemical screening and anti-TB activity of root extracts of Guiera senegalensis (J. F. Gmel). Amer. J. Biosci. Bioeng. 3, 208–213.

    Google Scholar 

  • Ahmed, M., Ramadan, W., Rambhu, D., and Shakeel, F. 2008. Potential of nanoemulsions for intravenous delivery of rifampicin. Pharmazie 63, 806–811.

    CAS  PubMed  Google Scholar 

  • Alavi, M., Karimi, N., and Safaei, M. 2017. Application of various types of liposomes in drug delivery systems. Adv. Pharm. Bull. 7, 3–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alving, C.R. 1983. Antibody against lipids, lipid bilayers and liposomes: a theory of ageing, p. 269. In Bangham, A.D. (eds.), Liposome Letters, Academic Press, London, UK.

    Google Scholar 

  • Ambrosio, L.D., Centis, R., Sotgiu, G., Pontali, E., Spanevello, A., and Migliori, G.B. 2015. New anti-TB drugs and regimens: 2015 update. ERJ Open Res. 1, 1–15.

    Article  Google Scholar 

  • Andini, N. and Nash, K.A. 2006. Intrinsic macrolide resistance of the Mycobacterium tuberculosis complex is inducible. Antimicrob. Agent Chemother. 50, 2560–2562.

    Article  CAS  Google Scholar 

  • Arya, V. 2011. A review on anti-tubercular plants. Int. J. PharmTech. Res. 3, 872–880.

    Google Scholar 

  • Bangham, A.D., Standish, M.M., and Watkins, J.C. 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13, 238–252.

    Article  CAS  PubMed  Google Scholar 

  • Banu, A. and Rathod, V. 2013. Biosynthesis of monodispersed silver nanoparticles and their activity against Mycobacterium tuberculosis. J. Nanomed. Biotherapeut. Discov. 3, 110.

    Article  CAS  Google Scholar 

  • Banyal, S., Malik, P., Tuli, H.S., and Mukherjee, T.K. 2013. Advances in nanotechnology for diagnosis and treatment of tuberculosis. Curr. Opin. Pulm. Med. 19, 289–297.

    Article  CAS  PubMed  Google Scholar 

  • Barclay, W.R., Ebert, R.H., and Kochweser, D. 1953. Mode of action of isoniazid. Am. Rev. Tuberc. Pulmon. Dis. 67, 490–496.

    CAS  Google Scholar 

  • Behr, M.A., Wlison, M.A., Gill, W.P., Salamon, H., Schoolnik, G.K., Rane S., and Small, P.M. 1999. Comparative genomics of BCC vaccines by whole-genome DNA microarray. Science 284, 1520–1523.

    Article  CAS  PubMed  Google Scholar 

  • Bespyatykh, J., Shitikov, E., Butenko, I., Altukhov, I., Alexeev, D., Mokrousov, I., Dogonadze, M., Zhuravlev, V., Yablonsky, P., Ilina, E., et al. 2016. Proteome analysis of the Mycobacterium tuberculosis Beijing B0/W148 cluster. Sci. Rep. 6, 1–11.

    Article  CAS  Google Scholar 

  • Bhandari, R. and Kaur, I. 2013. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int. J. Pharm. 441, 202.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya, K., Mukherjee, S.P., Gallud, A., Burkert, S.C., Bistarelli, S., Bellucci, S., Bottini, M., Star, A., and Fadeel, B. 2016. Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomed. Nanotechnol. Biol. Med. 12, 333–351.

    Article  CAS  Google Scholar 

  • Bibhas, C.M., Gitanjali, M., Subas, C.D., and Narahari, N.P. 2017. Exploring the use of lipid based nano-formulations for the management of tuberculosis. J. Nanosci. Curr. Res. 2, 112.

    Google Scholar 

  • Biju, S.S., Talegaonkar, S., Mishra, P.R., and Khar, R.K. 2006. Vesicular systems: An Overview. Ind. J. Pharm. Sci. 68, 141–153.

    Article  CAS  Google Scholar 

  • Boshoff, H.I., Myers, T.G., Copp, B.R., McNeil, M.R., Wilson, M.A., and Barry, C.E. 2004. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: Novel insights into drug mechanisms of action. J. Biol. Chem. 279, 40174–40184.

    Article  CAS  PubMed  Google Scholar 

  • Brossier, F., Veziris, N., Truffot-Pernot, C., Jarlier, V., and Sougakoff, W. 2011. Molecular investigation of resistance to the anti-tuberculous drug ethionamide in multidrug-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 55, 355–560.

    Article  CAS  PubMed  Google Scholar 

  • Bulbake, U., Doppalapudi, S., Kommineni, N., and Khan, W. 2017. Liposomal formulations in clinical use: An updated review. Pharmaceutics 9, 12.

    Article  PubMed Central  CAS  Google Scholar 

  • Cabral, H., Nishiyama, N., and Kataoka, K. 2007. Optimization of (1, 2-diamino-cyclohexane)platinum (II)-loaded polymeric micelles directed to improved tumor targeting and enhanced antitumor activity. J. Control Release 121, 146–155.

    Article  CAS  PubMed  Google Scholar 

  • Cha, C., Shin, S.R., Annabi, N., Dokmeci, M.R., and Khademhosseini, A. 2013. Carbon-based nanomaterials: Multi-functional materials for biomedical engineering. ACS Nano 7, 2891–2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chahine, E.B., Karaoui, L.R., and Mansour, H. 2014. Bedaquiline: A novel diarylquinoline for multidrug-resistant tuberculosis. Ann. Pharmacother. 48, 107–115.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, J., Teply, B.A., Sherifi, I., Sung, J., Luther, G., Gu, F.X., Levy- Nissenbaum, E., Radovic-Moreno, A.F., Langer, R., and Farokhzad, O.C. 2007. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterial 28, 869–876.

    Article  CAS  Google Scholar 

  • Cholo, M.C., Steel, H.C., Fourie, P.B., Germishuizen, W.A., and Anderson, R. 2012. Clofazimine: Current status and future prospects. J. Antimicrob. Chemother. 67, 290–298.

    Article  CAS  PubMed  Google Scholar 

  • Chuan, J., Li, Y., Yang, L., Sun, X., Zhang, Q., Gong, T., and Zhang, Z. 2013. Enhanced rifampicin delivery to alveolar macrophages by solid lipid nanoparticles. J. Nanopart. Res. 15, 1634.

    Article  Google Scholar 

  • Costa, A., Pinheiro, M., Magalhaes, J., Ribeiro, R., Seabra, V., Reis, S., and Sarmento, B. 2016. The formulation of nanomedicines for treating tuberculosis. Adv. Drug Deliv. Rev. 102, 102–115.

    Article  CAS  PubMed  Google Scholar 

  • Couto, C., Vitorino, R., and Daniel-da-Silva, A.L. 2016. Gold nanoparticles and bioconjugation: A pathway for proteomic applications. Crit. Rev. Biotechnol. 36, 1–13.

    Article  CAS  Google Scholar 

  • da Silva, P.B., de Freitas, E.S., Bernegossi, J., Gonçalez, M.L., Sato, M.R., Leite, C.Q.F., Pavan, F.R., and Chorilli M. 2016. Nanotechnology-based drug delivery systems for treatment of tuberculosis–A review. J. Biomed. Nanotechnol. 12, 241–260.

    Article  PubMed  CAS  Google Scholar 

  • Dalton, J.P., Uy, B., Phummarin, N., Copp, B.R., Denny, W.A., Swift, S., and Wiles, S. 2016. Effect of common and experimental antituberculosis treatments on Mycobacterium tuberculosis growing as biofilms. PeerJ. 4, 1–12.

    Article  CAS  Google Scholar 

  • DeBarber, A.E., Mdluli, K., Bosman, M., Bekker, L.G., and Barry, C.E. 2000. Ethionamide activation and sensitivity in multidrugresistant Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 97, 9677–9782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diacon, A.H., Dawson, R., Bois, J.D., Narunsky, K., Venter, A., Donald, P.R., van Niekerkf, C., Eronduf, N., Ginsbergf, A.M., Beckerg, P., et al. 2012a. Phase II dose-ranging trial of the early bactericidal activity of PA-824. Antimicrob. Agents Chemother. 56, 3027–3231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diacon, A.H., Dawson, R., Groote-Bidlingmaier, F.V., Symons, G., Venter, A., Peter, R.D., van Niekerkf, C., Everitt, D., Winter, H., Becker, P., et al. 2012b. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: A randomised trial. Lancet 380, 986–993.

    Article  CAS  PubMed  Google Scholar 

  • El-Ridy, S.M., Yehia, S.A., Kassem, M.A.M., Mostafa, D.M., Nasr, E.A., and Asfour, M.H. 2015. Niosomal encapsulation of ethambutol hydrochloride for increasing its efficacy and safety. Drug Deliv. 22, 21–36.

    Article  CAS  PubMed  Google Scholar 

  • Felix, L.C., Ede, J.D., Snell, D.A., Oliveira, T.M., Rubi, Y.M., Simard, B., Luong, J.H.T., and Goss, G.G. 2016. Physicochemical properties of functionalized carbon-based nanomaterials and their toxicity to fishes. Carbon 104, 78–89.

    Article  CAS  Google Scholar 

  • Fenaroli, F., Westmoreland, D., Benjaminsen, J., Kolstad, T., Skjeldal, F.M., Meijer, A.H., van der Vaart, M., Ulanova, L., Roos, N., Nyström, B., et al. 2014. Nanoparticles as drug delivery system against tuberculosis in zebrafish embryos: Direct visualization and treatment. ACS Nano 8, 7014–7026.

    Article  CAS  PubMed  Google Scholar 

  • Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., and Galdiero, M. 2015. Silver nanoparticles as potential antibacterial agents. Molecules 20, 8856–8874.

    Article  CAS  PubMed  Google Scholar 

  • Gaspar, D.P., Gaspar, M.M., Eleuteerio, C.V., Grenha, A., Blanco, M., Gonçalves, L.M.D., Taboada, P., Almeida, A.J., and Remuñán-Loopez, C. 2017. Microencapsulated solid lipid nanoparticles as a hybrid platform for pulmonary antibiotic delivery. Mol. Pharm. 14, 2977–2990.

    Article  CAS  PubMed  Google Scholar 

  • Gaspar, M.M., Neves, S., Portaels, F.O., Pedrosa, J., Silva, M.T., and Cruz, M.E.M. 2000. Therapeutic efficacy of liposomal rifabutin in a Mycobacterium avium model of infection. Antimicrob. Agents Chemother. 44, 2424–2430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavrilova, N.N., Ratnikova, I.A., Sadanov, A.K., Bayakisheva, K., Tourlibaeva, Z.J., and Belikova, O.A. 2014. Application of probiotics in complex treatment of tuberculosis. Int. J. Engineer. Res. Appl. 4, 13–18.

    Google Scholar 

  • Gelperina, S., Kisich, K., Iseman, M.D., and Heifets, L. 2005. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am. J. Respir. Crit. Care Med. 172, 1487–1490.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghavami, G. and Sardari, S. 2011. New chimeric anti-tubercular dendrimers with self-delivering property. Afr. J. Microbiol. Res. 5, 2550–2554.

    CAS  Google Scholar 

  • Grayson, S.M. and Frechet, J.M. 2001. Convergent dendrons and dendrimers: from synthesis to applications. Chem. Rev. 101, 3819–3868.

    Article  CAS  PubMed  Google Scholar 

  • Groll, A.V., Martin, A., Jureen, P., Hoffner, S., Vandamme, P., Portaels, F., Palomino, J.C., and da Silva, P.A. 2009. Fluoroquinolone resistance in Mycobacterium tuberculosis and mutations in gyrA and gyrB. Antimicrob. Agents Chemother. 53, 4498–4500.

    Article  CAS  Google Scholar 

  • Groschel, M.I., Sayes, F., Simeone, R., Majlessi, L., and Brosch, R. 2016. ESX secretion systems: mycobacterial evolution to counter host immunity. Nat. Rev. Microbiol. 14, 677–691.

    Article  CAS  PubMed  Google Scholar 

  • Gu, F.X., Zhang, L., Teply, B.A., Mann, N., Wang, A., Radovic-Moreno, A.F., Langer, R., and Farokhzad, O.C. 2008. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc. Natl. Acad. Sci. USA 105, 2586–2591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horsburgh Jr, C.R. 1991. Mycobacterium avium complex infection in the acquired immunodeficiency syndrome. N. Engl. J. Med. 324, 1332–1338.

    Article  PubMed  Google Scholar 

  • Hsieh, S.C., Chang, C.C., Lu, C.C., Wei, C.F., Lin, S.C., Lai, H.C., and Lin, C.W. 2012. Rapid identification of Mycobacterium tuberculosis infection by a new array format-based surface plasmon resonance method. Nanoscale Res. Lett. 7, 1–6.

    Article  CAS  Google Scholar 

  • Hu, F.Q., Wu, X., Du, Y.Z., You, J., and Yuan, H. 2008. Cellular uptake and cytotoxicity of shell crosslinked stearic acid-grafted chitosan oligosaccharide micelles encapsulating doxorubicin. Eur. J. Pharm. Biopharm. 69, 117–125.

    Article  CAS  PubMed  Google Scholar 

  • Jahan, H., Jhora, S.T., Habib, Z.H., Yusuf, A., Ahmed, I., Farzana, A., and Parveen, R. 2016. Diagnostic evaluation of GeneXpert MTB/RIF assay for the detection of rifampicin resistant Mycobacterium tuberculosis among pulmonary tuberculosis patients in Bangladesh. J. Tuburc. Res. 4, 55–60.

    CAS  Google Scholar 

  • Joshi, R.K. 2016. Asparagus racemosus (Shatawari), phytoconstituents and medicinal importance, future source of economy by cultivation in Uttrakhand: A review. Int. J. Herbal Med. 4, 18–21.

    Google Scholar 

  • Kandaswamy, N.A.K., Raj, A., and Alikunhi, N.B. 2010. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloid. Sur. B: Biointer. 79, 488–493.

    Article  CAS  Google Scholar 

  • Karki, R., Mamatha, G.C., Subramanya, G., and Udupa, N. 2008. Preparation, characterization and tissue disposition of niosomes containing isoniazid. Rasayan J. Chem. 2, 224–237.

    Google Scholar 

  • Katiyar, D., Singh, V., and Mohd, A. 2016. Recent advances in pharmacological potential of Syzygium cumini: A review. Adv. Appl. Sci. Res. 7, 1–12.

    CAS  Google Scholar 

  • Kavitha, K.S., Baker, S., Rakshith, D., Kavitha, H.U., Rao, H.C., Harini, B.P., and Satish, S. 2013. Plants as green source towards synthesis of nanoparticles. Int. Res. J. Biol. Sci. 2, 66–76.

    Google Scholar 

  • Kishore, N., Bhuwan, B., Mishra, S., Tiwari, V.K., and Tripathi, V. 2016. An account of phytochemicals from Plumbago zeylanica: A natural gift to human being. Chron. Young Sci. 3, 178–198.

    Google Scholar 

  • Kote, J.R., Kadam, A.S., Mane, R.S., and Mulani, R. 2016b. Antimycobacterial and cytotoxicity study of silver nanoparticles synthesized from leaf extract of Annona reticulate L. Int. J. New Technol. Sci. Engineer. 3, 26–35.

    Google Scholar 

  • Kote, J.R., Kadam, A.S., Mane, R.S., Tehare, K.K., and Mulani, R.M. 2015. Studies on anti-mycobacterial activity and cytotoxicity, antioxidant of newly synthesized copper nano particles from Artimisia pallens L. Bionano Front. 8, 157–160.

    Google Scholar 

  • Kote, J.R., Kadam, A.S., Patil, S.S., and Mane, R.S. 2016a. Green functionalized silver nanoparticles with significantly enhanced antimycobactericidal and cytotoxicity performances of Asparagus racemosus Linn. Int. J. New Technol. Sci. Engineer. 3, 12–26.

    Google Scholar 

  • Kote, J.R., Mulani, R.M., Kadam, A.S., and Solankar, B.M. 2014. Anti-mycobacterial activity of nanoparticles from Psidium guajava L. J. Microbiol. Biotechnol. Res. 4, 14–17.

    Google Scholar 

  • Kruuner, A., Jureen, P., Levina, K., Ghebremichael, S., and Hoffner, S. 2003. Discordant resistance to kanamycin and amikacin in drug-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 47, 2971–2973.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar, P.V., Asthana, A., Dutta, T., and Jain, N.K. 2006. Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J. Drug Target. 14, 546–556.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Robinson, S.M., Gupta, A., Saha, K., Jiang, Z., Moyano, D.F., Ali, S., Riley, M.A., and Rotello, V.M. 2014. Functional gold nanoparticles as potent antimicrobial agents against Multi-Drug-Resistant bacteria. ACS Nano 8, 10682–10686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H. and Rothberg, L.J. 2004a. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. USA 101, 14036–14039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H. and Rothberg, L.J. 2004b. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J. Am. Chem. Soc. 126, 10958–10961.

    Article  CAS  PubMed  Google Scholar 

  • Magdum, A.S., Hundekar, Y.R., and Chimkode, R.M. 2017. Niosomes: A promising vesicular drug delivery system for tuberculosis. Indo-Am. J. Pharma. Sci. 4, 2710–2723.

    CAS  Google Scholar 

  • Makarov, V., Manina, G., Mikusova, K., Mollmann, U., Ryabova, O., Saint-Joanis, B., Dhar, N., Pasca, M.R., Buroni, S., Lucarelli, A.P., et al. 2009. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 324, 801–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manca, M.L., Sinico, C., Maccioni, A.M., Diez, O., Fadda, A.M., and Manconi, M. 2012. Composition influence on pulmonary delivery of rifampicin liposomes. Pharmaceutic 4, 590–606.

    Article  CAS  Google Scholar 

  • Mariita, R.M., Callistus, K.P.O., Ogol, N.O., and Okemo, P.O. 2010. Antitubercular and phytochemical investigation of methanol extracts of medicinal plants used by the Samburu community in Kenya. Trop. J. Pharma. Res. 9, 379–385.

    Google Scholar 

  • Matsumoto, M., Hashizume, H., Tomishige, T., Kawasaki, M., Tsubouchi, H., Sasaki, H., Shimokawa, Y., and Komatsu, M. 2006. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med. 3, 2131–2144.

    Article  CAS  Google Scholar 

  • McClatchy, J.K., Kanes, W., Davidson, P.T., and Moulding, T.S. 1977. Cross-resistance in M. tuberculosis to kanamycin, capreomycin and viomycin. Tubercle 58, 29–34.

    CAS  PubMed  Google Scholar 

  • Mehta, S.K. and Jindal, N. 2013. Formulation of tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs. Colloid. Surf. B Biointerfaces 101, 434–441.

    Article  CAS  PubMed  Google Scholar 

  • Mesaric, T., Gambardella, C., Milivojevic, T., Faimali, M., Drobn, D., Falugi, C., Makovec, D., and Jemec, A. 2015. Sepcic, K. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae. Aquat. Toxicol. 163, 121–129.

    CAS  PubMed  Google Scholar 

  • Mikusova, K., Huang, H., Yagi, T., Holsters, M., Vereecke, D., D’Haeze, W., Scherman, M.S., Brennan, P.J., McNeil, M.R., and Crick, D.C. 2005. Decaprenylphosphoryl arabinofuranose, the donor of the D-arabinofuranosyl residues of Mycobacterial arabinan, is formed via a two-step epimerization of decaprenylphosphoryl ribose. J. Bacteriol. 187, 8020–8025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikusova, K., Rslayden, A., Besra, G.S., and Brennan, P.J. 2016. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob. Agent Chemother. 60, 2484–2489.

    Article  CAS  Google Scholar 

  • Moazed, D. and Noller, H.F. 1987. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327, 389–394.

    Article  CAS  PubMed  Google Scholar 

  • Mondal, S., Ghosh, D., and Ramakrishna, K. 2016. A complete profile on blind-your-eye mangrove Excoecaria agallocha L. (Euphorbiaceae): Ethnobotany, phytochemistry, and pharmacological aspects. Plant Rev. 10, 123–138.

    CAS  Google Scholar 

  • Mourya, V.K., Inamdar, N., Nawale, R.B., and Kulthe, S.S. 2011. Polymeric micelles: General considerations and their applications. Ind. J. Pharm. Edu. Res. 45, 128–138.

    Google Scholar 

  • Muller, R.H., Radtke, M., and Wissing, S.A. 2002. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 54, S131–S155.

    Article  CAS  PubMed  Google Scholar 

  • Nasiruddin, M., Neyaz, M.K., and Das, D. 2017. Nanotechnologybased approach in tuberculosis treatment. Tuberc. Res. Treat. 2017, 4920209.

    PubMed  PubMed Central  Google Scholar 

  • Nikalje, A.P. 2015. Nanotechnology and its applications in medicine. Med. Chem. 5, 81–89.

    Article  CAS  Google Scholar 

  • Njeru, S.N. and Obonyo, M.A. 2016. Potency of extracts of selected plant species from Mbeere, Embu County-Kenya against Mycobacterium tuberculosis. J. Med. Plant Res. 10, 149–157.

    Article  CAS  Google Scholar 

  • Pala, Z., Shukla, V., Alok, A., Kudale, S., and Desai, N. 2016. Enhanced production of an anti-malarial compound artesunate by hairy root cultures and phytochemical analysis of Artemisia pallens wall. 3 Biotech. 6, 1–8.

    Article  Google Scholar 

  • Palomino, J.C. and Martin, A. 2013. Tuberculosis clinical trial update and the current anti-tuberculosis drug portfolio. Curr. Med. Chem. 20, 3785–3796.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, R. and Khuller, G.K. 2005. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis 85, 227–234.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, S., Satpathy, G., and Gupta, R.K. 2014. Evaluation of nutritional, phytochemical, antioxidant and antibacterial activity of exotic fruit “Limonia acidissima”. J. Pharma. Phytochem. 3, 81–88.

    CAS  Google Scholar 

  • Pandey, R., Sharma, S., and Khuller, G.K. 2005. Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis 85, 415.

    Article  CAS  PubMed  Google Scholar 

  • Patil, G. and Banerjee, S.K. 2012. RP-HPLC method for the estimation of Rifabutin in bulk dosage form. Int. J. Drug Dev. Res. 4, 294–297.

    CAS  Google Scholar 

  • Patil, J.S., Devil, V.K., Devil, K., and Sarasija, S. 2015. A novel approach for lung delivery of rifampicin-loaded liposomes in dry powder form for the treatment of tuberculosis. Lung India 32, 331–338.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil, B.N. and Taranath, T.C. 2016. Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: A potent tool against Mycobacterium tuberculosis. Int. J. Mycobacteriol. 5, 197–204.

    Article  PubMed  Google Scholar 

  • Pethe, K., Bifani, P., Jang, J., Kang, S., Park, S., Ahn, S., Jiricek, J., Jung, J., Jeon, H.K., Cechetto, J., et al. 2013. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nature Med. 19, 1157–1160.

    Article  CAS  PubMed  Google Scholar 

  • Ranade, R., Jain, A., and Joshi, N. 2016. Estimation of phenolic compounds by RP-HPLC and antioxidant activity in leaf and stem extracts of Barleria prionitis L. Int. J. Pharma Sci. Res. 7, 2445–2457.

    CAS  Google Scholar 

  • Rani, N.P., Suriyaprakash, T.N.K., and Senthamarai, R. 2010. Formulation and evaluation of rifampicin and gatifloxacin niosomes on logarithmic-phase cultures of Mycobacterium tuberculosis. Int. J. Pharma Biol. Sci. 1, 379–387.

    Google Scholar 

  • Ranjini, D.S., Parthiban, S., Senthil Kumar, G.P., and Mani, T.T. 2017. Development of Levofloxacin loaded nano-niosomes as nanoscale drug delivery for effective treatment of tuberculosis. World J. Pharm. Pharm. Sci. 6, 1819–1828.

    CAS  Google Scholar 

  • Ranjita, S., Loaye, A.S., and Khalil, M. 2011. Present status of nanoparticle research for treatment of tuberculosis. J. Pharm. Pharm. Sci. 14, 100–116.

    Article  Google Scholar 

  • Rapoport, N. 2007. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci. 32, 962–990.

    Article  CAS  Google Scholar 

  • Rawashed, R. and Haik, Y. 2009. Antibacterial mechanisms of metallic nanoparticles: A review. Dyn. Biochem. Process Biotechnol. Mol. Biol. 3, 12–20.

    Google Scholar 

  • Rengarajan, J., Sassetti, C.M., Naroditskaya, V., Sloutsky, A., Bloom, B.R., and Rubin, E.J. 2004. The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacterial. Mol. Microbiol. 53, 275–282.

    Article  CAS  PubMed  Google Scholar 

  • Richter, E., Rusch-Gerdes, S., and Hillemann, D. 2007. First linezolid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 51, 1534–1536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangeetha, V.S., Babu, M., and Lawrence, B. 2014. Phytochemical analysis of Annona reticulata L. leaf extracts. Int. Res. J. Pharma. App. Sci. 4, 4–8.

    Google Scholar 

  • Satyanarayan, N.D., Al-Baadani, W.A., Shekhar, S.P., and Harishkumar, S. 2016. Anti-tubercular activity of various solvent extracts of Acalypha indica L. against drug susceptible H37RV strain. World J. Pharm. Pharm. Sci. 5, 957–965.

    CAS  Google Scholar 

  • Scarano, W., De Souzab, P., and Stenzel, M.H. 2015. Dual-drug delivery of curcumin and platinum drugs in polymeric micelles enhances the synergistic effects: A double act for the treatment of multidrug-resistant cancer. Biomater. Sci. 3, 163–174.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, D., Lata, M., Singh, R., Deo, N., Venkatesan, K., and Bisht, D. 2016. Cytosolic proteome profiling of aminoglycosides resistant Mycobacterium tuberculosis clinical isolates using MALDITOF/MS. Front. Microbiol. 7, 1816.

    PubMed  PubMed Central  Google Scholar 

  • Silva, B.L., Veigas, B., Doria, G., Costa, P., Inacio, J., Martins, R., Fortunato, E., and Baptista, P.V. 2011. Portable optoelectronic biosensing platform for identification of mycobacterial from the Mycobacterium tuberculosis complex. Biosens. Bioelectron. 26, 2012–2017.

    Article  CAS  PubMed  Google Scholar 

  • Singh, A., Gopinath, K., Sharma, P., Bisht, D., Sharma, P., Singh, N., and Singh, S. 2015. Comparative proteomic analysis of sequential isolates of Mycobacterium tuberculosis from a patient with pulmonary tuberculosis turning from drug sensitive to multidrug resistant. Indian J. Med. Res. 141, 27–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, D., Rathod, V., Fatima, L., Kausar, A.V., Anjum, N., and Priyanka, B. 2014. Biologically reduced silver nanoparticles from Streptomyces sp. VDP-5 and its antibacterial efficacy. Int. J. Pharm. Pharm. Sci. Res. 4, 31–36.

    Google Scholar 

  • Singh, R., Nawale, L., Arkile, M., Wadhwani, S., Shedbalkar, U., Chopade, N., Sarkar, N., and Chopade, B.A. 2016. Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents. Int. J. Nanomed. 11, 1889–1897.

    Article  CAS  Google Scholar 

  • Skidan, I.N., Gelperina, S.E., Severin, S.E., and Guliaev, A.E. 2003. Enhanced activity of rifampicin loaded with polybutyl cyanoacrylate nanoparticles in relation to intracellularly localized bacteria. Antibiot. Khimioter. 48, 23–26.

    CAS  PubMed  Google Scholar 

  • Soo, P., Horng, H., Chang, K.C., Wang, J.W., Hsueh, P.R., Chuang, C., Lu, C.C., and Lai, H.C. 2009. A simple gold nanoparticle probes assay for identification of Mycobacterium tuberculosis and Mycobacterium tuberculosis complex from clinical specimens. Mol. Cell. Probes 23, 240–246.

    Article  CAS  PubMed  Google Scholar 

  • Souto, E.B., Severino, P., Santana, M.H.A., and Pinho, S.C. 2011. Solid lipid nanoparticles: classical methods of lab production. Quím. Nova 34, 1762.

    CAS  Google Scholar 

  • Stanley, R.E., Blaha, G., Grodzicki, R.L., Strickler, M.D., and Steitz, T.A. 2010. The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat. Struct. Mol. Biol. 17, 289–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stover, K.C., Warrener, P., VanDevanter, D.R., Sherman, D.R., Arain, T.M., Langhorne, M.H., Anderson, S.W., Towell, J.A., Yuan, Y., McMurray, D.N., et al. 2000. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405, 962–966.

    Article  CAS  PubMed  Google Scholar 

  • Supraja, S., Ali, S.M., Chakravarthy, N., Prakash, J., Priya, A., Sagadevan, E., Kasinathan, M.K., Sindhu, S., and Arumugam, P. 2013. Green synthesis of silver nanoparticles from Cynodon dactylon leaf extract. Int. J. Chem. Technol. 5, 271–277.

    CAS  Google Scholar 

  • Svenson, S. and Tomalia, D.A. 2005. Dendrimers in biomedical applications-reflections on the field. Adv. Drug Deliv. Rev. 57, 2106–2129.

    Article  CAS  PubMed  Google Scholar 

  • Swaney, S.M., Aoki, H., Ganoza, M.C., and Shinabarger, D.L. 1998. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob. Agents Chemother. 42, 3251–3255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahlan, K., Wilson, R., Kastrinsky, D.B., Arora, K., Nair, V., Fischer, E., Barnes, S.W., Walker, J.R., Alland, D., Barry, C.E. 3rd, et al. 2012. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 56, 1797–1809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thatoi, P., Kerry, R.G., Gouda, S., Das, G., Pramanik, K., Thatoi, H.N., and Patra, J.K. 2016. Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J. Photochem. Photobiol. B 163, 311–318.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, T.T., Shen, S.W., Cheng, C.M., and Chen, C.F. 2013. Paperbased tuberculosis diagnostic devices with colorimetric gold nanoparticles. Sci. Technol. Adv. Matter 14, 1–7.

    Google Scholar 

  • Uchegbu, I.F. and Florence, A.T. 1995. Non-ionic surfactant vesicles (Niosomes): physical and pharmaceutical chemistry. Adv. Colloid. Interface Sci. 58, 1–55.

    Article  CAS  Google Scholar 

  • Uchegbu, I.F. and Vyas, S.O. 1998. Non-ionic surfactant based vesicles (Niosomes) in drug delivery. Int. J. Pharm. 172, 33–70.

    Article  CAS  Google Scholar 

  • Upadhyay, S., Khan, I., Gothwal, A., Pachouri, P.K., Bhaskar, N., Gupta, U.D., Chauhan, D.S., and Gupta, U. 2017. Conjugated and entrapped HPMA-PLA nano-polymeric micelles based dual delivery of first line anti-tuberculosis drugs: Improved and safe drug delivery against sensitive and resistant Mycobacterium tuberculosis. Pharm. Res. 34, 1944–1955.

    Article  CAS  PubMed  Google Scholar 

  • Vemuri, S. and Rhodes, C.T. 1995. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm. Acta Helv. 70, 95–111.

    Article  CAS  PubMed  Google Scholar 

  • Venugopal, J., Prabhakaran, M.P., Low, S., Choon, A.T., Deepika, G., Dev, V.R., and Ramakrishna, S. 2009. Continuous nanostructures for the controlled release of drugs. Curr. Pharm. Des. 15, 1799–1808.

    Article  CAS  PubMed  Google Scholar 

  • Vilcheze, C., Av-Gay, Y., Attarian, R., Liu, Z., Hazbón, M.H., Colangeli, R., Chen, B., Liu, W., Alland, D., Sacchettini, J.C., et al. 2008. Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis. Mol. Microbiol. 69, 1316–1329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker, B., Barrett, S., Polasky, S., Galaz, V., Folke, C., Engstrom, G., Ackerman, F., Arrow, K., Carpenter, S., Chopra, K., et al. 2009. Environment: Looming global-scale failures and missing institutions. Science 325, 1345–1346.

    Article  CAS  PubMed  Google Scholar 

  • White, R.J., Lancini, G.C., and Silvestri, L.G. 1971. Mechanism of action of rifampin on Mycobacterium smegmatis. J. Bacteriol. 108, 737–741.

    CAS  PubMed  PubMed Central  Google Scholar 

  • WHO Report 2015. Global Tuberculosis Control. http://apps.who.int/iris/bitstream/10665/191102/1/9789241565059_eng.pdf

  • WHO Report 2016. Global Tuberculosis Report. http://www.who.int/tb/publications/global_report/en/

  • Wissing, S.A. and Muller, R.H. 2003. Cosmetic applications for solid lipid nanoparticles (SLN). Int. J. Pharm. 254, 65–68.

    Article  CAS  PubMed  Google Scholar 

  • Wolinsky, J.B. and Grinstaff, M.W. 2008. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv. Drug Deliv. Rev. 60, 1037–1055.

    Article  CAS  PubMed  Google Scholar 

  • Xiang, Y., Zhu, X., Huang, Q., Zheng, J., and Fu, W. 2015. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by an Au nanoparticle-embedded SPR biosensor. Biosens. Bioelectron. 66, 512–519.

    Article  CAS  PubMed  Google Scholar 

  • Yah, C.S. and Simate, G.S. 2015. Nanoparticles as potential new generation broad spectrum antimicrobial agents. DARU J. Pharma. Sci. 23, 43.

    Article  CAS  Google Scholar 

  • Yano, T., Kassovska-Bratinova, S., Teh, J.S., Winkler, J., Sullivan, K., Isaacs, A., Schechter, N.M., and Rubin, H. 2011. Reduction of clofazimine by mycobacterial type 2 NADH: Quinone oxidoreductase: A pathway for the generation of bactericidal levels of reactive oxygen species. J. Biol. Chem. 286, 10276–10287.

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama, M. 2011. Clinical applications of polymeric micelle carrier systems in chemotherapy and image diagnosis of solid tumors. J. Exp. Clin. Med. 3, 151–158.

    Article  CAS  Google Scholar 

  • Zhang, Y. 2005. The magic bullets and tuberculosis drug targets. Ann. Rev. Pharma. Toxicol. 45, 529–564.

    Article  CAS  Google Scholar 

  • Zhang, L. and Granick, S. 2006. How to stabilize phospholipid liposomes (using nanoparticles). Nano Lett. 6, 694–698.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Pornpattananangkul, D., Hu, C.M.J., and Huang, C.M. 2010. Development of nanoparticles for antimicrobial drug delivery. Curr. Med. Chem. 17, 585–594.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Shi, W., Zhang, W., and Mitchison, D. 2013. Mechanisms of pyrazianamide action and resistance. Microbiol. Spectr. 2, 1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, F., Wang, X., Erber, L.N., Luo, M., Guo, A., Yang, S.S., Gu, J., Turman, B.J., Gao, Y.R., Li, D.F., et al. 2014. Binding pocket alterations in dihydrofolate synthase confer resistance to para-aminosalicylic acid in clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 58, 1479–1487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zumla, A., Nahid, P., and Cole, S.T. 2013. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Dis. 12, 388–404.

    Article  CAS  Google Scholar 

  • zur Mühlen, A., Schwarz, C., and Mehnert, W. 1998. Solid lipid nanoparticles (SLN) for controlled drug delivery: drug release and release mechanism. Eur. J. Pharm. Biopharm. 45, 149–155.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han-Seung Shin or Jayanta Kumar Patra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerry, R.G., Gouda, S., Sil, B. et al. Cure of tuberculosis using nanotechnology: An overview. J Microbiol. 56, 287–299 (2018). https://doi.org/10.1007/s12275-018-7414-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-7414-y

Keywords

Navigation