Skip to main content

Medicinal Plants in Targeting Tuberculosis II

  • Chapter
  • First Online:
Medicinal Plants for Lung Diseases

Abstract

Tuberculosis is a highly contagious infectious disease triggered by Mycobacterium tuberculosis, which is widely spread by aerosol. The major site of infection is usually the lungs however the disease can attack any extra-pulmonary site as well, which is further diagnosis by necrotizing granulomatous inflammation. World Health Organization reported almost 8.9–10 million people are suffering from tuberculosis in 2019, including 56% men and 32% women, and 12% children. Multidrug-resistant tuberculosis (MDR-TB) is a medical condition in which Mycobacterium tuberculosis strains resistant to at least isoniazid and rifampicin. In-vitro studies suggest that several bioactive compounds and their synthetic derivatives obtained from plants, fungi, and marine organism possesses antimycobacterial affinity. Phenolic compounds such as dihydrocubebin, hinokinin, ethoxycubebin possess the antimycobacterial activity. Mycobacterial cell envelope antagonists have been shown to obstruct the synthesis of mycolic acids, arabinogalactan, and peptidoglycan, essential components of the mycobacterial cell wall. The paramount antituberculous drugs hamper the development of mycolic acids or the aid mechanism which links them to the cell membrane. Medicines targeting RNA synthesis encompass those that restrict the assembly of bacterial DNA-dependent RNA polymerases, that are indispensable enzymes for RNA synthesis. Various molecular pathways for the target to cure tuberculosis entail the targets of M. tuberculosis cell wall synthesis, energy metabolism, folate metabolism, DNA replication, and RNA synthesis. Interestingly, in preserving the health of patients diagnosed with tuberculosis, medicinal plants have tremendous advantages with limited side effects as compare to the standard drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dheda K, Barry CE, Maartens G (2016) Tuberculosis. Lancet 387(10024):1211–1226. https://doi.org/10.1016/s0140-6736(15)00151-8

    Article  PubMed  Google Scholar 

  2. Comas I, Coscollá M, Luo T, Borrell S, Holt K, Kato-maeda M et al (2013) Out-of-Africa migration and Neolithic co-expansion of Mycobacterium tuberculosis with modern humans. Nat Genet 45:1176–1182. https://doi.org/10.1038/ng.2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ryan F (1994) The forgotten plague: how the battle against tuberculosis was won—and lost. Little brown & co, Boston, MA

    Google Scholar 

  4. WHO (2020) Global tuberculosis report. https://www.who.int/tb/publications/global_report/TB20_Exec_Sum_20201022.pdf?ua=1

  5. Lawn SD, Zumla AI (2011) Tuberculosis. Lancet 378(9785):57–72. https://doi.org/10.1016/s0140-6736(10)62173-3

    Article  PubMed  Google Scholar 

  6. Raviglione M, Harries A, Msiska R, Wilkinson D, Nunn PJA (1997) Tuberculosis and HIV: current status in Africa. AIDS 11(Suppl B):S115–S123

    PubMed  Google Scholar 

  7. Falzon D, Schünemann HJ, Harausz E, González-Angulo L, Lienhardt C, Jaramillo E, Weyer KJERJ (2017) World health organization treatment guidelines for drug-resistant tuberculosis, 2016 update. Eur Respir J 49(3):1602308

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nachega JB, Chaisson RE (2003) Tuberculosis drug resistance: a global threat. Clin Infect Dis 36(Suppl_1):S24–S30. https://doi.org/10.1086/344657

    Article  CAS  PubMed  Google Scholar 

  9. Arya V, Baba A, Singh A, Memorial J (2011) A review on anti-tubercular plants. Int J PharmTech Res 3(2):872–880

    Google Scholar 

  10. Copp BR (2003) Antimycobacterial natural products. Nat Prod Rep 20(6):535–557

    Article  CAS  PubMed  Google Scholar 

  11. Mangwani N, Singh PK, Kumar V (2019) Medicinal plants: adjunct treatment to tuberculosis chemotherapy to prevent hepatic damage. J Ayurveda Integr Med 11(4):522–528. https://doi.org/10.1016/j.jaim.2019.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  12. Newton SM, Lau C, Wright CWJPR (2000) A review of antimycobacterial natural products. Phytother Res 14(5):303–322

    Article  CAS  PubMed  Google Scholar 

  13. Okunade AL, Elvin-Lewis MP, Lewis WHJP (2004) Natural antimycobacterial metabolites: current status. Phytochemistry 65(8):1017–1032

    Article  CAS  PubMed  Google Scholar 

  14. Sanusi SB, Abu Bakar MF, Mohamed M, Sabran SF, Mainasara MM (2017) Southeast Asian medicinal plants as a potential source of antituberculosis agent. Evid Based Complement Alternat Med 2017:7185649. https://doi.org/10.1155/2017/7185649

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chinsembu KCJAT (2016) Tuberculosis and nature’s pharmacy of putative anti-tuberculosis agents. Acta Trop 153:46–56

    Article  CAS  PubMed  Google Scholar 

  16. León-Díaz R, Meckes M, Said-Fernández S, Molina-Salinas GM, Vargas-Villarreal J, Torres J et al (2010) Antimycobacterial neolignans isolated from Aristolochia taliscana. Mem Inst Oswaldo Cruz 105(1):45–51

    Article  PubMed  Google Scholar 

  17. Navarro-García V, Luna-Herrera J, Rojas-Bribiesca G, Álvarez-Fitz P, Rios Gomez Y (2011) Antibacterial activity of aristolochia brevipes against multidrug-resistant mycobacterium tuberculosis. Molecules 16:7357–7364. https://doi.org/10.3390/molecules16097357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiménez-Arellanes A, León-Díaz R, Meckes M, Tapia A, Molina-Salinas G, Luna-Herrera J, Yépez-Mulia L (2012) Antiprotozoal and Antimycobacterial Activities of Pure Compounds from Aristolochia elegans Rhizomes. Evid Based Complement Alternat Med 2012:593403. https://doi.org/10.1155/2012/593403

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jyoti MA, Nam KW, Jang WS, Kim YH, Kim SK, Lee BE, Song HY (2016) Antimycobacterial activity of methanolic plant extract of Artemisia capillaris containing ursolic acid and hydroquinone against Mycobacterium tuberculosis. J Infect Chemother 22(4):200–208. https://doi.org/10.1016/j.jiac.2015.11.014

    Article  CAS  PubMed  Google Scholar 

  20. Ntutela S, Smith P, Matika L, Mukinda J, Arendse H, Allie N et al (2009) Efficacy of artemisia afra phytotherapy in experimental tuberculosis. Tuberculosis 1(Suppl 1):S33–S40. https://doi.org/10.1016/s1472-9792(09)70009-5

    Article  Google Scholar 

  21. María GMS, Borquez J, Ardiles A, Said-Fernández S, San-Martín A et al (2010) Bioactive metabolites from the Andean flora. Antituberculosis activity of natural and semisynthetic azorellane and mulinane diterpenoids. Phytochem Rev 9:271–278. https://doi.org/10.1007/s11101-010-9162-4

    Article  CAS  Google Scholar 

  22. Lenta BN, Chouna JR, Nkeng-Efouet PA, Sewald N (2015) Endiandric Acid Derivatives and Other Constituents of Plants from the Genera Beilschmiedia and Endiandra (Lauraceae). Biomol Ther 5(2):910–942. https://doi.org/10.3390/biom5020910

    Article  CAS  Google Scholar 

  23. Aponte J, Estevez Y, Gilman R, Lewis W, Rojas R, Sauvain M et al (2008) Anti-infective and cytotoxic compounds present in Blepharodon nitidum. Planta Med 74:407–410. https://doi.org/10.1055/s-2008-1034330

    Article  CAS  PubMed  Google Scholar 

  24. Torres-romero D, Jiménez I, Rojas R, Gilman R, López M, Bazzocchi I (2011) Dihydro-β-agarofuran sesquiterpenes isolated from Celastrus vulcanicola as potential anti-Mycobacterium tuberculosis multidrug-resistant agents. Bioorgan Med Chem 19:2182–2189. https://doi.org/10.1016/j.bmc.2011.02.034

    Article  CAS  Google Scholar 

  25. Jiménez-Arellanes A, Meckes M, Alvarez V, Torres J, Parra R (2005) Secondary Metabolites from Chamaedora tepejilote (Palmae) are Active against Mycobacterium tuberculosis. Phytother Res 19:320–322. https://doi.org/10.1002/ptr.1664

    Article  CAS  Google Scholar 

  26. Mehta A, Srivastva G, Kachhwaha S, Sharma M, Kothari S (2013) Antimycobacterial activity of citrullus colocynthis (L) Schrad against drug sensitive and drug resistant Mycobacterium tuberculosis and MOTT clinical isolates. J Ethnopharmacol 149(1):195–200. https://doi.org/10.1016/j.jep.2013.06.022

    Article  PubMed  Google Scholar 

  27. Esquivel-Ferriño PC, Clemente-Soto AF, Ramírez-Cabriales MY, Garza-González E, Álvarez L, Camacho-Corona MDR (2014) Volatile constituents identified in hexane extract of Citrus sinensis peel and anti-mycobacterial tuberculosis activity of some of its constituents. J Mexican Chem Soc 58(4):431–434

    Google Scholar 

  28. GóMez-CANsiNo R, GUZMÁN-GUTIÉRREZ SL, CAMPOS-LARA MG, ESPITIA-PINZÓN CI, Reyes-Chilpa R (2017) Natural compounds from mexican medicinal plants as potential drug leads for anti-tuberculosis drugs. An Acad Bras Cienc 89(1):31–43

    Article  PubMed  CAS  Google Scholar 

  29. Rojas R, Caviedes L, Aponte JC, Vaisberg AJ, Lewis WH, Lamas G et al (2006) Aegicerin, the first oleanane triterpene with wide-ranging antimycobacterial activity isolated from Clavija procera. J Nat Prod 69(5):845–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Agrawal D, Saikia D, Tiwari R, Ojha S, Shanker K, Jonnala K et al (2008) Demethoxycurcumin and its semisynthetic analogues as antitubercular agents. Planta Med 74:1828–1831. https://doi.org/10.1055/s-0028-1088335

    Article  CAS  PubMed  Google Scholar 

  31. Lall N, Meyer JJM, Wang Y, Bapela NB, van Rensburg CEJ, Fourie B, Franzblau SG (2005) Characterization of Intracellular Activity of Antitubercular Constituents the Roots of Euclea natalensis. Pharm Biol 43(4):353–357. https://doi.org/10.1080/13880200590951829

    Article  CAS  PubMed  Google Scholar 

  32. Esquivel-Ferriño PC, Favela-Hernández JM, Garza-González E, Waksman N, Ríos MY, del Rayo Camacho-Corona M (2012) Antimycobacterial activity of constituents from Foeniculum vulgare var. dulce grown in Mexico. Molecules 17(7):8471–8482. https://doi.org/10.3390/molecules17078471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jha D, Panda L, Pandian L, Ramaiah S, Anbarasu A (2012) Detection and confirmation of alkaloids in leaves of justicia adhatoda and bioinformatics approach to elicit its anti-tuberculosis activity. Appl Biochem Biotechnol 168(5):980–990. https://doi.org/10.1007/s12010-012-9834-1

    Article  CAS  PubMed  Google Scholar 

  34. Lakshmanan D, Werngren J, Jose L, Kp S, Nair M, Varma R et al (2011) Ethyl p-methoxycinnamate isolated from a traditional anti-tuberculosis medicinal herb inhibits drug resistant strains of Mycobacterium tuberculosis in vitro. Fitoterapia 82:757–761. https://doi.org/10.1016/j.fitote.2011.03.006

    Article  CAS  PubMed  Google Scholar 

  35. Jiménez-Arellanes A, Meckes M, Torres J, Luna-Herrera J (2007) Antimycobacterial triterpenoids from Lantana hispida (Verbenaceae). J Ethnopharmacol 111:202–205. https://doi.org/10.1016/j.jep.2006.11.033

    Article  CAS  PubMed  Google Scholar 

  36. Favela-Hernández JM, García A, Garza-González E, Rivas-Galindo VM, Camacho-Corona MR (2012) Antibacterial and antimycobacterial lignans and flavonoids from Larrea tridentata. Phytother Res 26(12):1957–1960. https://doi.org/10.1002/ptr.4660

    Article  CAS  PubMed  Google Scholar 

  37. Rijo P, Simões MF, Francisco AP, Rojas R, Gilman RH, Vaisberg AJ et al (2010) Antimycobacterial metabolites from plectranthus: royleanone derivatives against Mycobacterium tuberculosis strains. Chem Biodivers 7(4):922–932

    Article  CAS  PubMed  Google Scholar 

  38. Kumar P, Singh A, Sharma U, Singh D, Dobhal M, Singh S (2013) Anti-mycobacterial activity of plumericin and isoplumericin against MDR Mycobacterium tuberculosis. Pulm Pharmacol Ther 26(3):332–335. https://doi.org/10.1016/j.pupt.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  39. Luo X, Pires D, Aínsa JA, Gracia B, Mulhovo S, Duarte A et al (2011) Antimycobacterial evaluation and preliminary phytochemical investigation of selected medicinal plants traditionally used in Mozambique. J Ethnopharmacol 137(1):114–120. https://doi.org/10.1016/j.jep.2011.04.062

    Article  CAS  PubMed  Google Scholar 

  40. Uc-Cachón AH, Borges-Argáez R, Said-Fernández S, Vargas-Villarreal J, González-Salazar F, Méndez-González M et al (2014) Naphthoquinones isolated from Diospyros anisandra exhibit potent activity against pan-resistant first-line drugs Mycobacterium tuberculosis strains. Pulm Pharmacol Ther 27(1):114–120. https://doi.org/10.1016/j.pupt.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  41. Rukachaisirikul T, Prabpai S, Champung P, Suksamrarn A (2002) Chabamide, a novel piperine dimer from stems of Piper chaba. Planta Med 68(9):853–855. https://doi.org/10.1055/s-2002-34410

    Article  CAS  PubMed  Google Scholar 

  42. Acevedo L, Martínez E, Castañeda P, Franzblau S, Timmermann B, Linares E, Mata R (2000) New phenylethanoids from Buddleja cordata subsp. cordata. Planta Med 66:257–261. https://doi.org/10.1055/s-2000-8570

    Article  CAS  PubMed  Google Scholar 

  43. Serkani JE, Isfahani BN, Safaei HG, Kermanshahi RK, Asghari G (2012) Evaluation of the effect of Humulus lupulus alcoholic extract on rifampin-sensitive and resistant isolates of Mycobacterium tuberculosis. Res Pharm Sci 7(4):235–242

    PubMed  PubMed Central  Google Scholar 

  44. Inui T, Wang Y, Nikolić D, Smith D, Franzblau S, Pauli G (2010) Sesquiterpenes from Oplopanax horridus. J Nat Prod 73:563–567. https://doi.org/10.1021/np900674d

    Article  CAS  PubMed  Google Scholar 

  45. Limmatvapirat C, Sirisopanaporn S, Kittakoop P (2004) Antitubercular and Antiplasmodial Constituents of Abrus precatorius. Planta Med 70:276–278. https://doi.org/10.1055/s-2004-818924

    Article  CAS  PubMed  Google Scholar 

  46. Macabeo APG, Lee CAJPJ (2014) Sterols and triterpenes from the non-polar antitubercular fraction of. Abutilon Indicum 6(4):49–52

    CAS  Google Scholar 

  47. Phongpaichit S, Vuddhakul V, Subhadhirasakul S, Wattanapiromsakul CJPB (2006) Evaluation of the antimycobacterial activity of extracts from plants used as self-medication by AIDS patients in Thailand. Pharm Biol 44(1):71–75

    Article  Google Scholar 

  48. Elkington BG, Sydara K, Newsome A, Hwang CH, Lankin DC, Simmler C et al (2014) New finding of an anti-TB compound in the genus Marsypopetalum (Annonaceae) from a traditional herbal remedy of Laos. J Ethnopharmacol 151(2):903–911

    Article  PubMed  Google Scholar 

  49. Mohamad S, Zin NM, Wahab HA, Ibrahim P, Sulaiman SF, Zahariluddin ASM, Noor SSM (2011) Antituberculosis potential of some ethnobotanically selected Malaysian plants. J Ethnopharmacol 133(3):1021–1026

    Article  PubMed  Google Scholar 

  50. Macabeo APG, Vidar WS, Chen X, Decker M, Heilmann J, Wan B et al (2011) Mycobacterium tuberculosis and cholinesterase inhibitors from Voacanga globosa. Eur J Med Chem 46(7):3118–3123

    Article  CAS  PubMed  Google Scholar 

  51. Hasan N, Osman H, Mohamad S, Chong WK, Awang K, Zahariluddin ASMJP (2012) The chemical components of Sesbania grandiflora root and their antituberculosis activity. Pharmaceuticals 5(8):882–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Radji M, Kurniati M, Kiranasari AJJ o APS (2015) Comparative antimycobacterial activity of some Indonesian medicinal plants against multi-drug resistant Mycobacterium tuberculosis. Pharm Biol 5(1):019–022

    Google Scholar 

  53. Mulyani Y, Sukandar E, Adnyana I (2012) Petiveria alliacea: new alternative for the treatment of sensitive and multi-resistant Mycobacterium tuberculosis. J Pharmacog Phtother 4(7):91–95

    Google Scholar 

  54. Jiangseubchatveera N, Liawruangrath B, Liawruangrath S, Korth J, Pyne SGJJ o EOBP (2015) The chemical constituents and biological activities of the essential oil and the extracts from leaves of Gynura divaricata (L) DC growing in Thailand. J Essent Oil Bear Plants 18(3):543–555

    Article  CAS  Google Scholar 

  55. Saludes JP, Garson MJ, Franzblau SG, Aguinaldo AMJ, Derivatives TE (2002) Antitubercular constituents from the hexane fraction of Morinda citrifolia Linn(Rubiaceae). Phytother Res 16(7):683–685

    Article  CAS  PubMed  Google Scholar 

  56. Jang WS, Jyoti MA, Kim S, Nam K-W, Ha TKQ, Oh WK, Song H-Y (2016) In vitro antituberculosis activity of diterpenoids from the Vietnamese medicinal plant Croton tonkinensis. J Nat Med 70(1):127–132

    Article  CAS  PubMed  Google Scholar 

  57. Chaisson RE, Bishai WR (2017) Overview of tuberculosis. In: Handbook of tuberculosis. Adis, London, pp 1–15

    Google Scholar 

  58. Flynn JL, Chan J (2003) Immune evasion by Mycobacterium tuberculosis: living with the enemy. Curr Opin Immunol 15(4):450–455. https://doi.org/10.1016/S0952-7915(03)00075-X

    Article  CAS  PubMed  Google Scholar 

  59. Karakousis PC, Dutta NK, Manabe YC (2017) Clinical features and diagnosis of tuberculosis: primary infection and progressive pulmonary tuberculosis. In: Handbook of tuberculosis. Adis, Cham, pp 17–34. https://doi.org/10.1007/978-3-319-26273-4_2

    Chapter  Google Scholar 

  60. Habibi P, Daniell H, Soccol CR, Grossi-de-Sa MF (2019) The potential of plant systems to break the HIV-TB link. Plant Biotechnol J 17(10):1868–1891. https://doi.org/10.1111/pbi.13110

    Article  PubMed  PubMed Central  Google Scholar 

  61. Churchyard G, Kim P, Shah NS, Rustomjee R, Gandhi N, Mathema B, Dowdy D, Kasmar A, Cardenas V (2017) What we know about tuberculosis transmission: an overview. J Infect Dis 216:S629–S635

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gomez-cansino R, Guzman-gutierrez SL, Campos-lara MG, Espitia-pinzon CI, Reyes-Chilpa R (2017) Natural compounds from Mexican medicinal plants as potential drug leads for antituberculosis drugs. Anais Acad Bras Ciencias 89(1):31–43. https://doi.org/10.1590/0001-3765201720160298

    Article  CAS  Google Scholar 

  63. Widyarti S, Kamaruddin M, Aristyani S, Elvina M, Subagjo S, Rahayu T, Sumitro SB (2019) Bioinorganic chemistry and computational study of herbal medicine to treatment of tuberculosis. In: Medicinal plants-use in prevention and treatment of diseases. IntechOpen, New York

    Google Scholar 

  64. Dorman S, Gupta A (2017) Treatment of pulmonary tuberculosis. In: Handbook of tuberculosis. Adis, Cham, pp 35–90. https://doi.org/10.1007/978-3-319-26273-4_3

    Chapter  Google Scholar 

  65. Kerr PG (2013) Plants and tuberculosis: phytochemicals potentially useful in the treatment of tuberculosis. In: Fighting multidrug resistance with herbal extracts, essential oils and their components. Academic Press, Cambridge, MA, pp 45–64. https://doi.org/10.1016/B978-0-12-398539-2.00005-7

    Chapter  Google Scholar 

  66. Kishore N, Mishra BB, Tripathi V, Tiwari VK (2009) Alkaloids as potential anti-tubercular agents. Fitoterapia 80(3):149–163. https://doi.org/10.1016/j.fitote.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  67. Ma C, Case RJ, Wang Y, Zhang HJ, Tan GT, Van Hung N, Cuong NM, Franzblau SG, Soejarto DD, Fong HH, Pauli GF (2005) Anti-tuberculosis constituents from the stem bark of Micromelum hirsutum. Planta Med 71(3):261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sharma D, Parkash Yadav J (2017) An overview of phytotherapeutic approaches for the treatment of tuberculosis. Mini Rev Med Chem 17(2):167–183

    Article  CAS  PubMed  Google Scholar 

  69. Saga T (2007) First detection of the plasmid-mediated quinolone resistance determinant qnrA in Enterobacteriaceae clinical isolates in Japan. Int J Antimicrob Agents 29:738–748

    Article  CAS  PubMed  Google Scholar 

  70. Rastogi N, Abaul J, Goh KS, Devallois A, Philogène E, Bourgeois P (1998) Antimycobacterial activity of chemically defined natural substances from the Caribbean flora in Guadeloupe. FEMS Immunol Med Microbiol 20(4):267–273

    Article  CAS  PubMed  Google Scholar 

  71. Okunade AL, Hufford CD, Richardson MD, Peterson JR, Clark AM (1994) Antimicrobial properties of alkaloids from Xanthorhiza simplicissima. J Pharm Sci 83(3):404–406

    Article  CAS  PubMed  Google Scholar 

  72. Kittakoop P, Mahidol C, Ruchirawat S (2014) Alkaloids as important scaffolds in therapeutic drugs for the treatments of cancer, tuberculosis, and smoking cessation. Curr Top Med Chem 14(2):239–252

    Article  CAS  PubMed  Google Scholar 

  73. Gandotra S, Lebron MB, Ehrt S (2010) The Mycobacterium tuberculosis proteasome active site threonine is essential for persistence yet dispensable for replication and resistance to nitric oxide. PLoS Pathog 6(8):e1001040. https://doi.org/10.1371/journal.ppat.1001040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zheng Y, Jiang X, Gao F, Song J, Sun J, Wang L, Sun X, Lu Z, Zhang H (2014) Identification of plant-derived natural products as potential inhibitors of the Mycobacterium tuberculosis proteasome. BMC Complement Altern Med 14(1):400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Chan ED, Oberley-Deegan RE, McGibney M, Ovrutsky A, Bai X (2010) Curcumin enhances macrophage killing of mycobacterium tuberculosis. In: B48. Tuberculosis and non-tuberculous mycobacterium: treatment outcome studies and case reports. American Thoracic Society, New York, pp A3171–A3171

    Chapter  Google Scholar 

  76. Tousif S, Singh DK, Mukherjee S, Ahmad S, Arya R, Nanda R, Ranganathan A, Bhattacharyya M, Van Kaer L, Kar SK, Das G (2017) Nanoparticle-formulated curcumin prevents posttherapeutic disease reactivation and reinfection with Mycobacterium tuberculosis following isoniazid therapy. Front Immunol 8:739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zu Bentrup KH, Miczak A, Swenson DL, Russell DG (1999) Characterization of activity and expression of isocitrate lyase in mycobacterium avium and mycobacterium tuberculosis. J Bacteriol 181(23):7161–7167

    Article  Google Scholar 

  79. Safwat NA, Kashef MT, Aziz RK, Amer KF, Ramadan MA (2018) Quercetin 3-O-glucoside recovered from the wild Egyptian Sahara plant, Euphorbia paralias L., inhibits glutamine synthetase and has antimycobacterial activity. Tuberculosis 108:106–113

    Article  CAS  PubMed  Google Scholar 

  80. Chaudhari SM, Badole SL (2014) Polyphenols and tuberculosis. In: Polyphenols in human health and disease. Academic Press, Cambridge, MA, pp 723–730

    Chapter  Google Scholar 

  81. Hussain K, Ismail Z, Sadikun A, Ibrahim P (2009) Antioxidant, anti-TB activities, phenolic and amide contents of standardised extracts of Piper sarmentosum Roxb. Nat Prod Res 23(3):238–249

    Article  CAS  PubMed  Google Scholar 

  82. Mazlun MH, Sabran SF, Mohamed M, Abu Bakar MF, Abdullah Z (2019) Phenolic compounds as promising drug candidates in tuberculosis therapy. Molecules 24(13):2449. https://doi.org/10.3390/molecules24132449

    Article  CAS  PubMed Central  Google Scholar 

  83. Frei B, Higdon JV (2003) Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr 133(10):3275S–3284S

    Article  CAS  PubMed  Google Scholar 

  84. Chiang CC, Cheng MJ, Peng CF, Huang HY, Chen IS (2010) A novel dimeric coumarin analog and antimycobacterial constituents from Fatoua pilosa. Chem Biodivers 7(7):1728–1736

    Article  CAS  PubMed  Google Scholar 

  85. Tan N, Bilgin M, Tan E, Miski M (2017) Antibacterial activities of pyrenylated coumarins from the roots of Prangos hulusii. Molecules 22(7):1098. https://doi.org/10.3390/molecules22071098

    Article  CAS  PubMed Central  Google Scholar 

  86. Widelski J, Popova M, Graikou K, Glowniak K, Chinou I (2009) Coumarins from Angelica lucida L.-antibacterial activities. Molecules 14(8):2729–2734. https://doi.org/10.3390/molecules14082729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gupta R, Thakur B, Singh P, Singh HB, Sharma VD, Katoch VM, Chauhan SVS (2010) Anti-tuberculosis activity of selected medicinal plants against multi-drug resistant Mycobacterium tuberculosis isolates. Indian J Med Res 131(6):809

    PubMed  Google Scholar 

  88. Uc-Cachon AH, Borges-Argaez R, Said-Fernandez S, Vargas-Villarreal J, Gonzalez-Salazar F, Mendez-Gonzalez M, Caceres-Farfan M, Molina-Salinas GM (2014) Naphthoquinones isolated from Diospyros anisandra exhibit potent activity against pan-resistant first-line drugs Mycobacterium tuberculosis strains. Pulm Pharmacol Ther 27(1):114–120

    Article  CAS  PubMed  Google Scholar 

  89. Rajab MS, Cantrell CL, Franzblau SG, Fischer NH (1998) Antimycobacterial activity of (E)-phytol and derivatives: a preliminary structure-activity study. Planta Med 64(01):2–4

    Article  CAS  PubMed  Google Scholar 

  90. Ulubelen A, Topcu G, Johansson CB (1997) Norditerpenoids and diterpenoids from salvia m ulticaulis with antituberculous activity. J Nat Prod 60(12):1275–1280

    Article  CAS  PubMed  Google Scholar 

  91. Jiménez-Arellanes A, Luna-Herrera J, Cornejo-Garrido J, López-García S, Castro-Mussot ME, Meckes-Fischer M, Mata-Espinosa D, Marquina B, Torres J, Hernández-Pando R (2013) Ursolic and oleanolic acids as antimicrobial and immunomodulatory compounds for tuberculosis treatment. BMC Complement Alternat Med 13(1):258. https://doi.org/10.1186/1472-6882-13-258

    Article  CAS  Google Scholar 

  92. Encarnación-Dimayuga R, Agúndez-Espinoza J, García A, Delgado G, Molina-Salinas GM, Said-Fernández S (2006) Two new cassane-type diterpenes from Calliandra californica with antituberculosis and cytotoxic activities. Planta Med 72(08):757–761. https://doi.org/10.1055/s-2006-931587

    Article  CAS  PubMed  Google Scholar 

  93. Barry CE III (2001) Interpreting cell wall ‘virulence factors’ of Mycobacterium tuberculosis. Trends Microbiol 9(5):237–241

    Article  CAS  PubMed  Google Scholar 

  94. Sharma A, Islam MH, Fatima N, Upadhyay TK, Khan MKA, Dwivedi UN, Sharma R (2018) Deciphering the binding of natural terpenoids to mycobacterium tuberculosis type III polyketide synthase 18 (PKS18): an in-silico approach. J Appl Pharm Sci 8(05):026–034. https://doi.org/10.7324/JAPS.2018.8504

    Article  CAS  Google Scholar 

  95. Bhat ZS, Rather MA, Maqbool M, Ahmad Z (2018) Drug targets exploited in Mycobacterium tuberculosis: Pitfalls and promises on the horizon. Biomed Pharmacother 103:1733–1747

    Article  CAS  PubMed  Google Scholar 

  96. van Ingen J, Rahim Z, Mulder A, Boeree MJ, Simeone R, Brosch R, van Soolingen D (2012) Characterization of mycobacterium orygis as M. tuberculosis complex subspecies. Emerg Infect Dis 18(4):653. https://doi.org/10.3201/eid1804.110888

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544. https://doi.org/10.1038/31159

    Article  CAS  PubMed  Google Scholar 

  98. Mojumdar M, Paul A, Kabir MSH, Rahman MG, Zohora FT, Hasan MS, Rahman MM (2016) Molecular docking and pass prediction for analgesic activity of some isolated compounds from Acalypha indica L. and ADME/T property analysis of the compounds. World J Pharm Res 5(7):1761–1770

    CAS  Google Scholar 

  99. Scharf NT, Molodtsov V, Kontos A, Murakami KS, Garcia GA (2017) Novel chemical scaffolds for inhibition of rifamycin-resistant RNA polymerase discovered from high-throughput screening. SLAS Discov 22(3):287–297. https://doi.org/10.1177/2472555216679994

    Article  CAS  PubMed  Google Scholar 

  100. Raju A, Degani MS, Khambete MP, Ray MK, Rajan MGR (2015) Antifolate activity of plant polyphenols against Mycobacterium tuberculosis. Phytother Res 29(10):1646–1651. https://doi.org/10.1002/ptr.5437

    Article  CAS  PubMed  Google Scholar 

  101. Minato Y, Thiede JM, Kordus SL, McKlveen EJ, Turman BJ, Baughn AD (2015) Mycobacterium tuberculosis folate metabolism and the mechanistic basis for para-aminosalicylic acid susceptibility and resistance. Antimicrob Agents Chemother 59(9):5097–5106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Koul A, Dendouga N, Vergauwen K, Molenberghs B, Vranckx L, Willebrords R, Ristic Z, Lill H, Dorange I et al (2007) Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol 3:323–324. https://doi.org/10.1038/nchembio884

    Article  CAS  PubMed  Google Scholar 

  103. Guillemont J, Meyer C, Poncelet A, Bourdrez X, Andries K (2011) Diarylquinolines, synthesis pathways and quantitative structure–activity relationship studies leading to the discovery of TMC207. Future Med Chem 3(11):1345–1360. https://doi.org/10.4155/FMC.11.79

    Article  CAS  PubMed  Google Scholar 

  104. Maiolini M, Gause S, Taylor J, Steakin T, Shipp G, Lamichhane P, Deshmukh B, Shinde V, Bishayee A, Deshmukh RR (2020) The war against tuberculosis: a review of natural compounds and their derivatives. Molecules 25(13):3011. https://doi.org/10.3390/molecules25133011

    Article  CAS  PubMed Central  Google Scholar 

  105. Zaynab M, Fatima M, Abbas S, Sharif Y, Umair M, Zafar MH, Bahadar K (2018) Role of secondary metabolites in plant defense against pathogens. Microb Pathog 124:198–202

    Article  CAS  PubMed  Google Scholar 

  106. Mugumbate GC (2018) Natural products a reservoir of drugs for treatment of pulmonary tuberculosis. EC Pulmonol Respirat Med 7:545–553

    Google Scholar 

  107. Kurmukov AG (2013) Medicinal plants of central asia: Uzbekistan and Kyrgyzstan. Springer, Cham

    Google Scholar 

  108. Gupta VK, Kumar MM, Bisht D, Kaushik A (2017) Plants in our combating strategies against Mycobacterium tuberculosis: progress made and obstacles met. Pharm Biol 55(1):1536–1544. https://doi.org/10.1080/13880209.2017.1309440

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sivakumar A, Jayaraman G (2011) Anti-tuberculosis activity of commonly used medicinal plants of south India. J Med Plants Res 5(31):6881–6884. https://doi.org/10.5897/JMPR11.1397

    Article  Google Scholar 

  110. Shashidhar M, Sandhya MS, Pankaj P, Suhasini B (2015) Herbal drugs as anti-tuberculosis agents. Int J Ayurvedic Herb Med 4:1895–1900

    Google Scholar 

  111. Gupta SC, Patchva S, Koh W, Aggarwal BB (2012) Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol 39(3):283–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Araujo RC, Neves FA, Formagio AS, Kassuya CA, Stefanello ME, Souza VV, Pavan FR, Croda J (2014) Evaluation of the anti-mycobacterium tuberculosis activity and in vivo acute toxicity of Annona sylvatic. BMC Complement Altern Med 14(1):209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Njeru SN, Obonyo MA, Nyambati SO, Ngari SM (2015) Bioactivity of Cissampelos pareira medicinal plant against Mycobacterium tuberculosis. J Pharmacog Phytochem 3:167–173

    Google Scholar 

  114. Eminzade S, Uras F, Izzettin FV (2008) Silymarin protects liver against toxic effects of anti-tuberculosis drugs in experimental animals. Nutr Metabol 5(1):18. https://doi.org/10.1186/1743-7075-5-18

    Article  CAS  Google Scholar 

  115. Sieniawska E, Sawicki R, Swatko-Ossor M, Napiorkowska A, Przekora A, Ginalska G, Augustynowicz-Kopec E (2018) The effect of combining natural terpenes and antituberculous agents against reference and clinical Mycobacterium tuberculosis strains. Molecules 23(1):176. https://doi.org/10.3390/molecules23010176

    Article  CAS  PubMed Central  Google Scholar 

  116. Choi WH (2017) Novel pharmacological activity of artesunate and artemisinin: Their potential as anti-tubercular agents. J Clin Med 6(3):30. https://doi.org/10.3390/jcm6030030

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koirala, N., Modi, B., Subba, R.K., Panthi, M., Xiao, J. (2021). Medicinal Plants in Targeting Tuberculosis II. In: Dua, K., Nammi, S., Chang, D., Chellappan, D.K., Gupta, G., Collet, T. (eds) Medicinal Plants for Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6850-7_8

Download citation

Publish with us

Policies and ethics