Skip to main content
Log in

Degradation and polymerization of monolignols by Abortiporus biennis, and induction of its degradation with a reducing agent

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

This study was carried out to better understand the characteristic modification mechanisms of monolignols by enzyme system of Abortiporus biennis and to induce the degradation of monolignols. Degradation and polymerization of monolignols were simultaneously induced by A. biennis. Whole cells of A. biennis degraded coniferyl alcohol to vanillin and coniferyl aldehyde, and degraded sinapyl alcohol to 2,6-dimethoxybenzene- 1,4-diol, with the production of dimers. The molecular weight of monolignols treated with A. biennis increased drastically. The activities of lignin degrading enzymes were monitored for 24 h to determine whether there was any correlation between monolignol biomodification and ligninolytic enzymes. We concluded that complex enzyme systems were involved in the degradation and polymerization of monolignols. To degrade monolignols, ascorbic acid was added to the culture medium as a reducing agent. In the presence of ascorbic acid, the molecular weight was less increased in the case of coniferyl alcohol, while that of sinapyl alcohol was similar to that of the control. Furthermore, the addition of ascorbic acid led to the production of various degraded compounds: syringaldehyde and acid compounds. Accordingly, these results demonstrated that ascorbic acid prevented the rapid polymerization of monolignols, thus stabilizing radicals generated by enzymes of A. biennis. Thereafter, A. biennis catalyzed the oxidation of stable monolignols. As a result, ascorbic acid facilitated predominantly monolignols degradation by A. biennis through the stabilization of radicals. These findings showed outstanding ability of A. biennis to modify the lignin compounds rapidly and usefully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bouws, H., Wattenberg, A., and Zorn, H. 2008. Fungal secretomes–nature’s toolbox for white biotechnology. Appl. Microbiol. Biotechnol. 80, 381–388.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Breen, A. and Singleton, F.L. 1999. Fungi in lignocellulose breakdown and biopulping. Curr. Opin. Biotechnol. 10, 252–258.

    Article  CAS  PubMed  Google Scholar 

  • Claus, H. 2004. Laccases: Structure, reactions, distribution. Micron. 35, 93–96.

    Article  CAS  PubMed  Google Scholar 

  • Dashtban, M., Schraft, H., Syed, T.A., and Qin, W. 2010. Fungal biodegradation and enzymatic modification of lignin. Int. J. Biochem. Mol. Biol. 1, 36–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faure, D., Bouillant, M., Jacoud, C., and Bally, R. 1996. Phenolic derivatives related to lignin metabolism as substrates for Azospirillum laccase activity. Phytochemistry 42, 357–359.

    Article  CAS  Google Scholar 

  • Gouveia, S., Fernández-Costas, C., Sanromán, M., and Moldes, D. 2013. Polymerisation of Kraft lignin from black liquors by laccase from Myceliophthora thermophila: effect of operational conditions and black liquor origin. Bioresour. Technol. 131, 288–294.

    Article  CAS  PubMed  Google Scholar 

  • Higuchi, T. 1986. Catabolic pathways and role of ligninases for the degradation of lignin substructure models by white-rot fungi. Wood Res. 73, 58–81.

    CAS  Google Scholar 

  • Higuchi, T. 1990. Lignin biochemistry: biosynthesis and biodegradation. Wood Sci. Technol. 24, 23–63.

    Article  CAS  Google Scholar 

  • Hirosue, S., Tazaki, M., Hiratsuka, N., Yanai, S., Kabumoto, H., Shinkyo, R., Arisawa, A., Sakaki, T., Tsunekawa, H., Johdo, O., et al. 2011. Insight into functional diversity of cytochrome P450 in the white-rot basidiomycete Phanerochaete chrysosporium: involvement of versatile monooxygenase. Biochem. Biophys. Res. Commun. 407, 118–123.

    Article  CAS  PubMed  Google Scholar 

  • Hofrichter, M. 2002. Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb. Technol. 30, 454–466.

    Article  CAS  Google Scholar 

  • Hong, C.Y., Park, S.Y., Kim, S.H., Lee, S.Y., Ryu, S.H., and Choi, I.G. 2016. Biomodification of ethanol organolsolv lignin by Abortiporus biennis and its structural change by addition of reducing agent. J. Korean Wood Sci. Technol. 44, 124–134.

    Article  Google Scholar 

  • Iwahara, K., Honda, Y., Watanabe, T., and Kuwahara, M. 2000. Polymerization of guaiacol by lignin-degrading manganese peroxidase from Bjerkandera adusta in aqueous organic solvents. Appl. Microbiol. Biotechnol. 54, 104–111.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, C.W. and Beckham, G.T. 2015. Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin. Metab. Eng. 28, 240–247.

    Article  CAS  PubMed  Google Scholar 

  • Kawai, S., Asukai, M., Ohya, N., Okita, K., Ito, T., and Ohashi, H. 1999. Degradation of a non-phenolic ß-O-4 substructure and of polymeric lignin model compounds by laccase of Coriolus versicolor in the presence of 1-hydroxybenzotriazole. FEMS Lett. 170, 51–57.

    CAS  Google Scholar 

  • Kawai, S., Umezawa, T., and Higuchi, T. 1988a. Degradation mechanisms of phenolic ß-1 lignin substructure model compounds by laccase of Coriolus versicolor. Arch. Biochem. Biophys. 262, 99–110.

  • Kawai, S., Umezawa, T., Shimada, M., and Higuchi, T. 1988b. Aromatic ring cleavage of 4, 6-di(tert-butyl) guaiacol, a phenolic lignin model compound, by laccase of Coriolus versicolor. FEBS Lett. 236, 309–311.

    Article  CAS  PubMed  Google Scholar 

  • Kinne, M., Poraj-Kobielska, M., Ralph, S.A., Ullrich, R., Hofrichter, M., and Hammel, K.E. 2009. Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase. J. Biol. Chem. 284, 29343–29349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk, T.K. and Farrell, R.L. 1987. Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 41, 465–505.

    Article  CAS  PubMed  Google Scholar 

  • Kirk, T.K. and Nakatsubo, F. 1983. Chemical mechanism of an important cleavage reaction in the fungal degradation of lignin. Biochim. Biophys. Acta 756, 376–384.

    Article  CAS  Google Scholar 

  • Kudanga, T., Nyanhongo, G.S., Guebitz, G.M., and Burton, S. 2011. Potential applications of laccase-mediated coupling and grafting reactions: a review. Enzyme Microb. Technol. 48, 195–208.

    Article  CAS  PubMed  Google Scholar 

  • Linger, J.G., Vardon, D.R., Guarnieri, M.T., Karp, E.M., Hunsinger, G.B., Franden, M.A., Johnson, C.W., Chupka, G., Strathmann, T.J., Pienkos, P.T., et al. 2014. Lignin valorization through integrated biological funneling and chemical catalysis. Proc. Natl. Acad. Sci. USA 111, 12013–12018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maijala, P., Mattinen, M.L., Nousiainen, P., Kontro, J., Asikkala, J., Sipilä, J., and Viikari, L. 2012. Action of fungal laccases on lignin model compounds in organic solvents. J. Mol. Catal. B: Enzymatic 76, 59–67.

    Article  CAS  Google Scholar 

  • Munk, L., Sitarz, A.K., Kalyani, D.C., Mikkelsen, J.D., and Meyer, A.S. 2015. Can laccases catalyze bond cleavage in lignin? Biotechnol. Adv. 33, 13–24.

    CAS  Google Scholar 

  • Nugroho Prasetyo, E., Kudanga, T., Østergaard, L., Rencoret, J., Gutiérrez, A., del Río, J.C., Ignacio Santos, J., Nieto, L., Jiménez-Barbero, J., Martínez, A.T., et al. 2010. Polymerization of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility. Bioresour. Technol. 101, 5054–5062.

    Article  CAS  PubMed  Google Scholar 

  • Önnerud, H., Zhang, L., Gellerstedt, G., and Henriksson, G. 2002. Polymerization of monolignols by redox shuttle–mediated enzymatic oxidation: a new model in lignin biosynthesis I. Plant Cell 14, 1953–1962.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollegioni, L., Tonin, F., and Rosini, E. 2015. Lignin-degrading enzymes. FEBS J. 282, 1190–1213.

    Article  CAS  PubMed  Google Scholar 

  • Quideau, S. and Ralph, J. 1992. Facile large-scale synthesis of coniferyl, sinapyl, and p-coumaryl alcohol. J. Agric. Food Chem. 40, 1108–1110.

    Article  CAS  Google Scholar 

  • Rüttimann-Johnson, C. and Lamar, R.T. 1996. Polymerization of pentachlorophenol and ferulic acid by fungal extracellular lignindegrading enzymes. Appl. Environ. Microbiol. 62, 3890–3893.

    PubMed  PubMed Central  Google Scholar 

  • Schmidt, O. 2006. Wood and tree fungi, pp. 99–107. Springer, USA.

    Google Scholar 

  • Shao, H.B., Chu, L.Y., Lu, Z.H., and Kang, C.M. 2008. Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int. J. Biol. Sci. 4, 8–14.

    Article  CAS  Google Scholar 

  • Shimizu, M., Yuda, N., Nakamura, T., Tanaka, H., and Wariishi, H. 2005. Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycete Phanerochaete chrysosporium against exogenous addition of vanillin. Proteomics 5, 3919–3931.

    Article  CAS  PubMed  Google Scholar 

  • Tomizawa, S., Chuah, J.A., Matsumoto, K., Doi, Y., and Numata, K. 2014. Understanding the limitations in the biosynthesis of polyhydroxyalkanoate (PHA) from lignin derivatives. ACS Sustain Chem. Eng. 2, 1106–1113.

    Article  CAS  Google Scholar 

  • Vardon, D.R., Franden, M.A., Johnson, C.W., Karp, E.M., Guarnieri, M.T., Linger, J.G., Salm, M.J., Strathmann, T.J., and Beckham, G.T. 2015. Adipic acid production from lignin. Energy Environ. Sci. 8, 617–628.

    Article  CAS  Google Scholar 

  • Westermark, U. 1982. Calcium promoted phenolic coupling by superoxide radical–a possible lignification reaction in wood. Wood Sci. Technol. 16, 71–78.

    Article  CAS  Google Scholar 

  • Wong, D.W. 2009. Structure and action mechanism of ligninolytic enzymes. Appl. Biochem. Biotechnol. 157, 174–209.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, S., Chatani, A., Honda, Y., Watanabe, T., and Kuwahara, M. 1998. Reaction of manganese peroxidase of Bjerkandera adusta with synthetic lignin in acetone solution. J. Wood Sci. 44, 486–490.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Gyu Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, CY., Park, SY., Kim, SH. et al. Degradation and polymerization of monolignols by Abortiporus biennis, and induction of its degradation with a reducing agent. J Microbiol. 54, 675–685 (2016). https://doi.org/10.1007/s12275-016-6158-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-6158-9

Keywords

Navigation