Skip to main content

Advertisement

Log in

The Pseudomonas aeruginosa extracellular secondary metabolite, Paerucumarin, chelates iron and is not localized to extracellular membrane vesicles

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Proteins encoded by the Pseudomonas aeruginosa pvcA-D operon synthesize a novel isonitrile functionalized cumarin termed paerucumarin. The pvcA-D operon enhances the expression of the P. aeruginosa fimbrial chaperone/usher pathway (cup) genes and this effect is mediated through paerucumarin. Whether pvcA-D and/or paerucumarin affect the expression of other P. aeruginosa genes is not known. In this study, we examined the effect of a mutation in pvcA-D operon the global transcriptome of the P. aeruginosa strain PAO1-UW. The mutation reduced the expression of several ironcontrolled genes including pvdS, which is essential for the expression of the pyoverdine genes. Additional transcriptional studies showed that the pvcA-D operon is not regulated by iron. Exogenously added paerucumarin enhanced pyoverdine production and pvdS expression in PAO1-UW. Iron-chelation experiments revealed that purified paerucumarin chelates iron. However, exogenously added paerucumarin significantly reduced the growth of a P. aeruginosa mutant defective in pyoverdine and pyochelin production. In contrast to other secondary metabolite, Pseudomonas quinolone signal (PQS), paerucumarin is not localized to the P. aeruginosa membrane vesicles. These results suggest that paerucumarin enhances the expression of iron-controlled genes by chelating iron within the P. aeruginosa extracellular environment. Although paerucumarin chelates iron, it does not function as a siderophore. Unlike PQS, paerucumarin is not associated with the P. aeruginosa cell envelope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anzaldi, L.L. and Skaar, E.P. 2010. Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect. Immun. 78, 4977–4989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini, Y. and Hochberg, Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B 57, 289–300.

    Google Scholar 

  • Church, D., Elsayed, S., Reid, O., Winston, B., and Lindsay, R. 2006. Burn wound infections. Clin. Microbiol. Rev. 19, 403–434.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke-Pearson, M.F. and Brady, S.F. 2008. Paerucumarin, a new metabolite produced by the pvc gene cluster from Pseudomonas aeruginosa. J. Bacteriol. 190, 6927–6930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornelis, P. 2010. Iron uptake and metabolism in pseudomonads. Appl. Microbiol. Biotechnol. 86, 1637–1645.

    Article  CAS  PubMed  Google Scholar 

  • Cornelis, P., Matthijs, S., and Van Oeffelen, L. 2009. Iron uptake regulation in Pseudomonas aeruginosa. Biometals 22, 15–22.

    Article  CAS  PubMed  Google Scholar 

  • Diggle, S.P., Matthijs, S., Wright, V.J., Fletcher, M.P., Chhabra, S.R., Lamont, I.L., Kong, X., Hider, R.C., Cornelis, P., Camara, M., et al. 2007. The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem. Biol. 14, 87–96.

    Article  CAS  PubMed  Google Scholar 

  • Donlan, R.M. and Costerton, J.W. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driscoll, J.A., Brody, S.L., and Kollef, M.H. 2007. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 67, 351–368.

    Article  CAS  PubMed  Google Scholar 

  • Engel, J. and Balachandran, P. 2009. Role of Pseudomonas aeruginosa type III effectors in disease. Curr. Opin. Microbiol. 12, 61–66.

    Article  CAS  PubMed  Google Scholar 

  • Ghysels, B., Dieu, B.T., Beatson, S.A., Pirnay, J.P., Ochsner, U.A., Vasil, M.L., and Cornelis, P. 2004. FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa. Microbiology 150, 1671–1680.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, R.L., Burns, J.L., and Ramsey, B.W. 2003. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am. J. Respir. Crit. Care Med. 168, 918–951.

    Article  PubMed  Google Scholar 

  • Hamood, A.N., Colmer, J.A., and Carty, N.L. 2004). Regulation of Pseudomonas aeruginosa exotoxin A synthesis. In Ramos, J.L. (ed.), Pseudomonas: Virulence and gene regulation, pp. 389–423. Kluwer Academic/Plenum Publishers, NY, USA.

    Chapter  Google Scholar 

  • Hamood, A.N., Colmer, J.A., Ochsner, U.A., and Vasil, M.L. 1996. Isolation and characterization of a Pseudomonas aeruginosa gene, ptxR, which positively regulates exotoxin A production. Mol. Microbiol. 21, 97–110.

    Article  CAS  PubMed  Google Scholar 

  • Holloway, B.W., Krishnapillai, V., and Morgan, A.F. 1979. Chromosomal genetics of Pseudomonas. Microbiol. Rev. 43, 73–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imperi, F., Tiburzi, F., and Visca, P. 2009. Molecular basis of pyoverdine siderophore recycling in Pseudomona aeruginosa. Proc. Natl. Acad. Sci. USA 106, 20440–20445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs, M.A., Alwood, A., Thaipisuttikul, I., Spencer, D., Haugen, E., Ernst, S., Will, O., Kaul, R., Raymond, C., Levy, R., et al. 2003. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100, 14339–14344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leid, J.G., Willson, C.J., Shirtliff, M.E., Hassett, D.J., Parsek, M.R., and Jeffers, A.K. 2005. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-?-mediated macrophage killing. J. Immunol. 175, 7512–7518.

    Article  CAS  PubMed  Google Scholar 

  • Lyczak, J.B., Cannon, C.L., and Pier, G.B. 2002. Lung infections associated with cystic fibrosis. Clin. Microbiol. Rev. 15, 194–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mashburn, L.M. and Whiteley, M. 2005. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437, 422–425.

    Article  CAS  PubMed  Google Scholar 

  • Matsukawa, M. and Greenberg, E.P. 2004. Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J. Bacteriol. 186, 4449–4456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nairz, M., Schroll, A., Sonnweber, T., and Weiss, G. 2010. The struggle for iron - a metal at the host-pathogen interface. Cell. Microbiol. 12, 1691–1702.

    Article  CAS  PubMed  Google Scholar 

  • Ochsner, U.A. and Vasil, M.L. 1996. Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: cycle selection of iron-regulated genes. Proc. Natl. Acad. Sci. USA 93, 4409–4414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochsner, U.A., Vasil, A.I., and Vasil, M.L. 1995. Role of the ferric uptake regulator of Pseudomonas aeruginosa in the regulation of siderophores and exotoxin A expression: purification and activity on iron-regulated promoters. J. Bacteriol. 177, 7194–7201.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ochsner, U.A., Wilderman, P.J., Vasil, A.I., and Vasil, M.L. 2002. GeneChip® expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol. Microbiol. 45, 1277–1287.

    Article  CAS  PubMed  Google Scholar 

  • Ohman, D.E., Sadoff, J.C., and Iglewski, B.H. 1980. Toxin A-deficient mutants of Pseudomonas aeruginosa PA103: isolation and characterization. Infect. Immun. 28, 899–908.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pesci, E.C., Milbank, J.B., Pearson, J.P., McKnight, S., Kende, A.S., Greenberg, E.P., and Iglewski, B.H. 1999. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96, 11229–11234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pier, G.B. and Ramphal, R. 2010). Pseudomonas aeruginosa. In Mandell, G.L., Bennett, J.E., and Dolin, R. (eds.), Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, pp. 2835–2860. Churchill Livingstone Philadelphia, UK.

    Chapter  Google Scholar 

  • Qaisar, U., Luo, L., Haley, C.L., Brady, S.F., Carty, N.L., Colmer-Hamood, J.A., and Hamood, A.N. 2013. The pvc operon regulates the expression of the Pseudomonas aeruginosa fimbrial chaperone/ usher pathway (cup) genes. PLoS One 8, e62735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rafla, K. and Tredget, E.E. 2011. Infection control in the burn unit. Burns 37, 5–15.

    Article  PubMed  Google Scholar 

  • Reiner, A., Yekutieli, D., and Benjamini, Y. 2003. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19, 368–375.

    Article  CAS  PubMed  Google Scholar 

  • Sadikot, R.T., Blackwell, T.S., Christman, J.W., and Prince, A.S. 2005. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am. J. Respir. Crit. Care Med. 171, 1209–1223.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwyn, B. and Neilands, J.B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Stintzi, A., Johnson, Z., Stonehouse, M., Ochsner, U., Meyer, J.M., Vasil, M.L., and Poole, K. 1999. The pvc gene cluster of Pseudomonas aeruginosa: role in synthesis of the pyoverdine chromophore and regulation by PtxR and PvdS. J. Bacteriol. 181, 4118–4124.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., et al. 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964.

    Article  CAS  PubMed  Google Scholar 

  • Tashiro, Y., Ichikawa, S., Nakajima-Kambe, T., Uchiyama, H., and Nomura, N. 2010. Pseudomonas quinolone signal affects membrane vesicle production in not only Gram-negative but also Grampositive bacteria. Microbes Environ. 25, 120–125.

    Article  PubMed  Google Scholar 

  • van Delden, C. 2004). Virulence factors in Pseudomonas aeruginosa. In Ramos, J.L. (ed.), Pseudomonas: Virulence and gene regulation, pp. 3–45. Kluwer Academic/Plenum Publishers, NY, USA.

    Chapter  Google Scholar 

  • Visca, P., Bonchi, C., Minandri, F., Frangipani, E., and Imperi, F. 2013. The dual personality of iron chelators: growth inhibitors or promoters? Antimicrob. Agents Chemother. 57, 2432–2433.

    Article  CAS  Google Scholar 

  • Wang, J. and Pantopoulos, K. 2011. Regulation of cellular iron metabolism. Biochem. J. 434, 365–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, M.J., McMorran, B.J., and Lamont, I.L. 2001. Analysis of promoters recognized by PvdS, an extracytoplasmic-function sigma factor protein from Pseudomonas aeruginosa. J. Bacteriol. 183, 2151–2155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winsor, G.L., Van Rossum, T., Lo, R., Khaira, B., Whiteside, M.D., Hancock, R.E., and Brinkman, F.S. 2009. Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Res. 37, D483–D488.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uzma Qaisar.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qaisar, U., Kruczek, C.J., Azeem, M. et al. The Pseudomonas aeruginosa extracellular secondary metabolite, Paerucumarin, chelates iron and is not localized to extracellular membrane vesicles. J Microbiol. 54, 573–581 (2016). https://doi.org/10.1007/s12275-016-5645-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-5645-3

Keywords

Navigation