Skip to main content
Log in

Pyrosequencing reveals bacterial diversity in Korean traditional wheat-based nuruk

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The emerging global importance of Korea’s alcoholic beverages emphasizes the need for quality enhancement of nuruk, a traditional Korean cereal starter that is used extensively in traditional brewing. Apart from fungi and yeasts, bacteria known to be ubiquitously present are also a part of the nuruk ecosystem and are known to influence fermentation activity by influencing fermentation favorable factors. In the current study, bacterial diversity and temporal variations in the traditional wheat-based nuruk, fermented at two representative temperature conditions for 30 days, along with two commercial wheat-based nuruk samples for comparison analysis were evaluated using libraries of PCR amplicons and 454 pyrosequencing targeting of the hypervariable regions V1 to V3 of the 16S rRNA gene. A total of 90,836 16S reads were analyzed and assigned to a total of 314, 321, and 141 Operational Taxonomic Units (OTUs) for nuruk A, B, and C, respectively. Diversity parameters clearly indicated nuruk B to be more diverse in terms of bacterial composition than nuruk A. Taxonomic assignments indicated that nuruk A was dominated by phylum Cyanobacteria, whereas nuruk B was dominated by phylum Actinobacteria. For both nuruk A and B, members of the phylum Firmicutes mostly converged into the family Bacillaceae; these microorganisms might be present in negligible numbers at the beginning but became significant as the fermentation progressed. The commercial samples were predominated by phylum Firmicutes, which is composed of Lactobacillaceae and Leoconostocaceae. The findings of this study provide new insights into understanding the changes in bacterial community structure during traditional nuruk starter production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amann, R.I., Ludwig, W., and Schleifer, K.H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ampe, F., Ben Omar, N., Moizan, C., Wacher, C., and Guyot, J.P. 1999. Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentations. Appl. Environ. Microbiol. 65, 5464–5473.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arunachalam, R., Wesley, E.G., George, J., and Annadurai, G. 2010. Novel approaches for identification of streptomycesnobortoensis TBGH-V20 with cellulase production. Curr. Res. Bacteriol. 3, 15–26.

    Article  CAS  Google Scholar 

  • Bal, J., Yun, S.H., Song, H.Y., Yeo, S.H., Kim, J.H., Kim, J.M., and Kim, D.H. 2014. Mycoflora dynamics analysis of Korean traditional wheat-based nuruk. J. Microbiol. 52, 1025–1029.

    Article  CAS  PubMed  Google Scholar 

  • Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Costello, E.K., Lauber, C.L., Hamady, M., Fierer, N., Gordon, J.I., and Knight, R. 2009. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., and Andersen, G.L. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.

    Article  CAS  PubMed  Google Scholar 

  • Ercolini, D., Pontonio, E., De Filippis, F., Minervini, F., La Storia, A., Gobbetti, M., and Di Cagno, R. 2013. Microbial ecology dynamics during rye and wheat sourdough preparation. Appl. Environ. Microbiol. 79, 7827–7836.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gantar, M., Kerby, N.W., Rowell, P., and Obreht, Z. 1991. Colonization of wheat (Triticum vulgare L.) by N2-fixing Cyanobacteria: I. A survey of soil Cyanobacterial isolates forming associations with roots. New Phytol. 118, 477–483.

    Google Scholar 

  • Golebiewski, M., Deja-Sikora, E., Cichosz, M., Tretyn, A., and Wrobel, B. 2014. 16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils. Microb. Ecol. 67, 635–647.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jang, H.D. and Chen, K.S. 2003. Production and characterization of thermostable cellulases from Streptomyces transformant T3–1. World J. Microbiol. Biotechnol. 19, 263–268.

    Article  CAS  Google Scholar 

  • Jin, J., Kim, S.Y., Jin, Q., Eom, H.J., and Han, N.S. 2008. Diversity analysis of lactic acid bacteria in takju, Korean rice wine. J. Microbiol. Biotechnol. 18, 1678–1682.

    CAS  PubMed  Google Scholar 

  • Jung, M.J., Nam, Y.D., Roh, S.W., and Bae, J.W. 2012. Unexpected convergence of fungal and bacterial communities during fermentation of traditional Korean alcoholic beverages inoculated with various natural starters. Food Microbiol. 30, 112–123.

    Article  PubMed  Google Scholar 

  • Kwon, S.J. and Sohn, J.H. 2012. Analysis of microbial diversity in Nuruk using PCR-DGGE. J. Life Sci. 22, 110–116.

    Article  Google Scholar 

  • Lee, J.S., Heo, G.Y., Lee, J.W., Oh, Y.J., Park, J.A., Park, Y.H., Pyun, Y.R., and Ahn, J.S. 2005. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 102, 143–150.

    Article  CAS  PubMed  Google Scholar 

  • Li, X.R., Ma, E.B., Yan, L.Z., Han Meng, H., Du, X.W., and Quan, Z.X. 2013. Bacterial and fungal diversity in the starter production process of Fen liquor, a traditional chinese liquor. J. Microbiol. 51, 430–438.

    Article  CAS  PubMed  Google Scholar 

  • McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., DeSantis, T.Z., Probst, A., Andersen, G.L., Knight, R., and Hugenholtz, P. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ponnusamy, K., Lee, S., and Lee, C.H. 2013. Time-dependent correlation of the microbial community and the metabolomics of traditional barley nuruk starter fermentation. Biosci. Biotechnol. Biochem. 77, 683–690.

    Article  PubMed  Google Scholar 

  • Rhee, S.J., Lee, J.E., and Lee, C.H. 2011. Importance of lactic acid bacteria in Asian fermented foods. Microb. Cell Fact. 10, S5.

    Article  PubMed Central  PubMed  Google Scholar 

  • Roh, S.W., Kim, K.H., Nam, Y.D., Chang, H.W., Park, E.J., and Bae, J.W. 2010. Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. ISME J. 4, 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Song, S.H., Lee, C., Lee, S., Park, J.M., Lee, H.J., Bai, D.H., Yoon, S.S., Choi, J.B., and Park, Y.S. 2013. Analysis of microflora profile in Korean traditional nuruk. J. Microbiol. Biotechnol. 23, 40–46.

    Article  CAS  PubMed  Google Scholar 

  • Tamang, J.P. 2012. Plant-based fermented foods and beverages ofasia, p. 74. In Hui, Y.H. and Evranuz, E. (eds.), Handbook of-plant-based fermented food and beverage technology, Taylor & Francis, United Kingdom.

    Google Scholar 

  • Thomas, P. 2006. Isolation of an ethanol tolerant endospore forming Gram-negative Brevibacillus sp. as a covert con-taminant in grape tissue cultures. J. Appl. Microbiol. 101, 764–774.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S., Lee, J., Kwak, J., Kim, K., Seo, M., and Lee, Y.W. 2011. Fungi associated with the traditional starter cultures used for rice wine in Korea. J. Kor. Soc. Appl. Biol. Chem. 54, 933–943.

    Article  CAS  Google Scholar 

  • Yu, T.S., Kim, J., Kim, H.S., Hyun, J.S., Ha, H.P., and Park, M.G. 1998. Bibliographical study on microorganisms of traditional Korean nuruk (since 1945). J. Korean Soc. Food Nutr. 27, 789–799.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Hyuk Kim.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bal, J., Yun, SH., Choi, MS. et al. Pyrosequencing reveals bacterial diversity in Korean traditional wheat-based nuruk . J Microbiol. 53, 812–819 (2015). https://doi.org/10.1007/s12275-015-5516-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-015-5516-3

Keywords

Navigation