Skip to main content
Log in

Particle elasticity influences polymeric artificial antigen presenting cell effectiveness in vivo via CD8+ T cell activation, macrophage uptake, and the protein corona

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Adoptive cell therapy (ACT) is an immunotherapy strategy for cancer that has seen widespread clinical success. During ACT, patient-derived lymphocytes are stimulated with the antigen of interest ex vivo, proliferated, then returned to the patient to initiate an antigen-specific antitumor response. While effective, this process is resource-intensive and logistically impossible for many patients. Particulate artificial antigen presenting cells (aAPCs) offer a potential “off-the-shelf” alternative to ex vivo ACT. While particulate aAPCs perform well in vitro, they have had limited success in vivo due to poor bioavailability after injection. Barriers to bioavailability include rapid clearance, unfavorable biodistribution, and inadequate interactions with CD8+ T cells at sites of interest. Biomaterial properties such as elasticity have been shown to vastly impact the bioavailability and particle-cell interactions, but this has yet to be investigated in the context of aAPCs for in vivo T-cell stimulation. Previous literature likewise indicates that biomaterial properties, especially elasticity, can modulate T-cell activation in vitro. With the goal of creating a more biomimetic, next-generation particulate aAPC, we developed a poly(ethylene) glycol hydrogel particle platform with tunable elasticity to investigate the impact of elasticity on antigen-specific T cell activation for in vivo adoptive transfer. Using this knowledge, we were able to gain more precise control over in vivo T cell activation and investigate possible mechanisms including the effects of aAPC elasticity on T cell binding, macrophage uptake, and the protein corona.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raskov, H.; Orhan, A.; Christensen, J. P.; Gögenur, I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br. J. Cancer 2021, 124, 359–367.

    Article  CAS  PubMed  Google Scholar 

  2. Bailey, S. R.; Berger, T. R.; Graham, C.; Larson, R. C.; Maus, M. V. Four challenges to CAR T cells breaking the glass ceiling. Eur. J. Immunol. 2023, 53, 2250039.

    Article  CAS  Google Scholar 

  3. Wang, C.; Sun, W. J.; Ye, Y. Q.; Bomba, H. N.; Gu, Z. Bioengineering of artificial antigen presenting cells and lymphoid organs. Theranostics 2017, 7, 3504–3516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Est-Witte, S. E.; Livingston, N. K.; Omotoso, M. O.; Green, J. J.; Schneck, J. P. Nanoparticles for generating antigen-specific T cells for immunotherapy. Semin. Immunol. 2021, 56, 101541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bandola-Simon, J.; Roche, P. A. Dysfunction of antigen processing and presentation by dendritic cells in cancer. Mol. Immunol. 2019, 113, 31–37.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Z.; Liu, S. S.; Zhang, B.; Qiao, L.; Zhang, Y.; Zhang, Y. T cell dysfunction and exhaustion in cancer. Front. Cell Dev. Biol. 2020, 8, 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ben-Akiva, E.; Witte, S. E.; Meyer, R. A.; Rhodes, K. R.; Green, J. J. Polymeric micro-and nanoparticles for immune modulation. Biomater. Sci. 2019, 7, 14–30.

    Article  CAS  Google Scholar 

  8. Meyer, R. A.; Sunshine, J. C.; Perica, K.; Kosmides, A. K.; Aje, K.; Schneck, J. P.; Green, J. J. Biodegradable nanoellipsoidal artificial antigen presenting cells for antigen specific T-cell activation. Small 2016, 11, 1519–1525.

    Article  Google Scholar 

  9. Meyer, R.; Sunshine, J.; Green, J. J. Biomimetic particles as therapeutics. Trends. Biotechnol. 2015, 33, 514–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ben-Akiva, E.; Meyer, R. A.; Wilson, D. R.; Green, J. J. Surface engineering for lymphocyte programming. Adv. Drug Deliv. Rev. 2017, 114, 102–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rhodes, K. R.; Isser, A.; Hickey, J. W.; Ben-Akiva, E.; Meyer, R. A.; Kosmides, A. K.; Livingston, N. K.; Tzeng, S. Y.; Schneck, J. P.; Green, J. J. Biodegradable cationic polymer blends for fabrication of enhanced artificial antigen presenting cells to treat melanoma. ACS Appl. Mater. Interfaces 2021, 13, 7913–7923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harrison, D. L.; Fang, Y.; Huang, J. T-cell mechanobiology: Force sensation, potentiation, and translation. Front. Phys. 2019, 7, 45.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Du, H. X.; Bartleson, J. M.; Butenko, S.; Alonso, V.; Liu, W. F.; Winer, D. A.; Butte, M. J. Tuning immunity through tissue mechanotransduction. Nat. Rev. Immunol. 2023, 23, 174–188.

    Article  CAS  PubMed  Google Scholar 

  14. Meng, K. P.; Majedi, F. S.; Thauland, T. J.; Butte, M. J. Mechanosensing through YAP controls T cell activation and metabolism. J. Exp. Med. 2020, 217, e20200053.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Platzman, I.; Kannenberg, G.; Janiesch, J. W.; Matić, J.; Spatz, J. PEG-based antigen-presenting cell surrogates for immunological applications. In Soft Matter Nanotechnology: From Structure to Function. Chen, X.; Fuchs, H., Eds.; Wiley-VCH: Weinheim, 2015; pp 187–215.

    Chapter  Google Scholar 

  16. Hickey, J. W.; Dong, Y.; Chung, J. W.; Salathe, S. F.; Pruitt, H. C.; Li, X. W.; Chang, C.; Fraser, A. K.; Bessell, C. A.; Ewald, A. J. et al. Engineering an artificial T-cell stimulating matrix for immunotherapy. Adv. Mater. 2019, 31, 1807359.

    Article  Google Scholar 

  17. Saitakis, M.; Dogniaux, S.; Goudot, C.; Bufi, N.; Asnacios, S.; Maurin, M.; Randriamampita, C.; Asnacios, A.; Hivroz, C. Different TCR-induced T lymphocyte responses are potentiated by stiffness with variable sensitivity. eLife 2017, 6, e23190.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Guo, P.; Liu, D. X.; Subramanyam, K.; Wang, B. R.; Yang, J.; Huang, J.; Auguste, D. T.; Moses, M. A. Nanoparticle elasticity directs tumor uptake. Nat. Commun. 2018, 9, 130.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Anselmo, A. C.; Mitragotri, S. Impact of particle elasticity on particle-based drug delivery systems. Adv. Drug Deliv. Rev. 2017, 108, 51–67.

    Article  CAS  PubMed  Google Scholar 

  20. Anselmo, A. C.; Zhang, M. W.; Kumar, S.; Vogus, D. R.; Menegatti, S.; Helgeson, M. E.; Mitragotri, S. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano 2015, 9, 3169–3177.

    Article  CAS  PubMed  Google Scholar 

  21. Hui, Y.; Yi, X.; Hou, F.; Wibowo, D.; Zhang, F.; Zhao, D. Y.; Gao, H. J.; Zhao, C. X. Role of nanoparticle mechanical properties in cancer drug delivery. ACS Nano 2019, 13, 7410–7424.

    Article  CAS  PubMed  Google Scholar 

  22. Cui, J. W.; De Rose, R.; Alt, K.; Alcantara, S.; Paterson, B. M.; Liang, K.; Hu, M.; Richardson, J. J.; Yan, Y.; Jeffery, C. M. et al. Engineering poly(ethylene glycol) particles for improved biodistribution. ACS Nano 2015, 9, 1571–1580.

    Article  CAS  PubMed  Google Scholar 

  23. Van Thienen, T. G.; Demeester, J.; De Smedt, S. C. Screening poly(ethyleneglycol) micro- and nanogels for drug delivery purposes. Int. J. Pharm. 2008, 351, 174–185.

    Article  CAS  PubMed  Google Scholar 

  24. Sunshine, J. C.; Perica, K.; Schneck, J. P.; Green, J. J. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells. Biomaterials 2014, 35, 269–277.

    Article  CAS  PubMed  Google Scholar 

  25. Akhtar, R.; Sherratt, M. J.; Cruickshank, J. K.; Derby, B. Characterizing the elastic properties of tissues. Mater. Today 2011, 14, 96–105.

    Article  CAS  Google Scholar 

  26. Doshi, N.; Zahr, A. S.; Bhaskar, S.; Lahann, J.; Mitragotri, S. Red blood cell-mimicking synthetic biomaterial particles. Proc. Natl. Acad. Sci. USA 2009, 106, 21495–21499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Overwijk, W. W.; Tsung, A.; Irvine, K. R.; Parkhurst, M. R.; Goletz, T. J.; Tsung, K.; Carroll, M. W.; Liu, C. L.; Moss, B.; Rosenberg, S. A. et al. gp100/pmel 17 is a murine tumor rejection antigen: Induction of “Self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J. Exp. Med. 1998, 188, 277–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Waldman, A. D.; Fritz, J. M.; Lenardo, M. J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wauters, A. C.; Scheerstra, J. F.; Vermeijlen, I. G.; Hammink, R.; Schluck, M.; Woythe, L.; Wu, H. L.; Albertazzi, L.; Figdor, C. G.; Tel, J. et al. Artificial antigen-presenting cell topology dictates T Cell activation. ACS Nano 2022, 16, 15072–15085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Majedi, F. S.; Hasani-Sadrabadi, M. M.; Thauland, T. J.; Li, S.; Bouchard, L. S.; Butte, M. J. Augmentation of T-cell activation by oscillatory forces and engineered antigen-presenting cells. Nano Lett. 2019, 19, 6945–6954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ye, L. L.; Wei, X. S.; Zhang, M.; Niu, Y. R.; Zhou, Q. The significance of tumor necrosis factor receptor type II in CD8+ regulatory T cells and CD8+ effector T cells. Front. Immunol. 2018, 9, 583.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Majedi, F. S.; Hasani-Sadrabadi, M. M.; Thauland, T. J.; Li, S.; Bouchard, L. S.; Butte, M. J. T-cell activation is modulated by the 3D mechanical microenvironment. Biomaterials 2020, 252, 120058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mishra, R. K.; Ahmad, A.; Vyawahare, A.; Alam, P.; Khan, T. H.; Khan, R. Biological effects of formation of protein corona onto nanoparticles. Int. J. Biol. Macromol. 2021, 175, 1–18.

    Article  CAS  PubMed  Google Scholar 

  34. Li, H. M.; Wang, Y.; Tang, Q.; Yin, D.; Tang, C.; He, E.; Zou, L.; Peng, Q. The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater. 2021, 129, 57–72.

    Article  CAS  PubMed  Google Scholar 

  35. Tomak, A.; Cesmeli, S.; Hanoglu, B. D.; Winkler, D.; Karakus, C. O. Nanoparticle-protein corona complex: Understanding multiple interactions between environmental factors, corona formation, and biological activity. Nanotoxicology 2021, 15, 1331–1357.

    Article  CAS  PubMed  Google Scholar 

  36. Panico, S.; Capolla, S.; Bozzer, S.; Toffoli, G.; Dal Bo, M.; Macor, P. Biological features of nanoparticles: Protein corona formation and interaction with the immune system. Pharmaceutics 2022, 14, 2605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tengjisi; Hui, Y.; Fan, Y. Y.; Zou, D.; Talbo, G. H.; Yang, G. Z.; Zhao, C. X. Influence of nanoparticle mechanical property on protein corona formation. J. Colloid Interface Sci. 2022, 606, 1737–1744.

    Article  CAS  PubMed  Google Scholar 

  38. Partikel, K.; Korte, R.; Stein, N. C.; Mulac, D.; Herrmann, F. C.; Humpf, H. U.; Langer, K. Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles. Eur. J. Pharm. Biopharm. 2019, 141, 70–80.

    Article  CAS  PubMed  Google Scholar 

  39. Yu, F. C.; Teo, G. C.; Kong, A. T.; Haynes, S. E.; Avtonomov, D. M.; Geiszler, D. J.; Nesvizhskii, A. I. Identification of modified peptides using localization-aware open search. Nat. Commun. 2020, 11, 4065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Polasky, D. A.; Yu, F. C.; Teo, G. C.; Nesvizhskii, A. I. Fast and comprehensive N- and O-glycoproteomics analysis with MSFragger-Glyco. Nat. Methods 2020, 17, 1125–1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Teo, G. C.; Polasky, D. A.; Yu, F. C.; Nesvizhskii, A. I. Fast deisotoping algorithm and its implementation in the MSFragger search engine. J. Proteome Res. 2021, 20, 498–505.

    Article  CAS  PubMed  Google Scholar 

  42. Yu, F. C.; Haynes, S. E.; Teo, G. C.; Avtonomov, D. M.; Polasky, D. A.; Nesvizhskii, A. I. Fast quantitative analysis of timsTOF PASEF data with MSFragger and IonQuant. Mol. Cell Proteomics 2020, 19, 1575–1585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chang, H. Y.; Kong, A. T.; Da Veiga Leprevost, F.; Avtonomov, D. M.; Haynes, S. E.; Nesvizhskii, A. I. Crystal-C: A computational tool for refinement of open search results. J. Proteome Res. 2020, 19, 2511–2515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Geiszler, D. J.; Kong, A. T.; Avtonomov, D. M.; Yu, F. C.; Da Veiga Leprevost, V.; Nesvizhskii, A. I. PTM-Shepherd: Analysis and summarization of post-translational and chemical modifications from open search results. Mol. Cell Proteomics 2021, 20, 100018.

    Article  CAS  PubMed  Google Scholar 

  45. Tsou, C. C.; Avtonomov, D.; Larsen, B.; Tucholska, M.; Choi, H.; Gingras, A. C.; Nesvizhskii, A. I. DIA-Umpire: Comprehensive computational framework for data-independent acquisition proteomics. Nat. Methods 2015, 12, 258–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gao, B. B.; Zhu, J.; Negi, S.; Zhang, X. M.; Gyoneva, S.; Casey, F.; Wei, R.; Zhang, B. H. Quickomics: Exploring omics data in an intuitive, interactive and informative manner. Bioinformatics 2021, 37, 3670–3672.

    Article  CAS  PubMed  Google Scholar 

  47. Parhami-Seren, B.; Viswanathan, M.; Strong, R. K.; Margolies, M. N. Structural analysis of mutants of high-affinity and low-affinity p-azophenylarsonate-specific antibodies generated by alanine scanning of heavy chain complementarity-determining region 2. J. Immunol. 2001, 167, 5129–5135.

    Article  CAS  PubMed  Google Scholar 

  48. Siegelman, M.; Capra, J. D. Complete amino acid sequence of light chain variable regions derived from five monoclonal anti-p-azophenylarsonate antibodies differing with respect to a crossreactive idiotype. Proc. Natl. Acad. Sci. USA 1981, 78, 7679–7683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chinen, A. B.; Guan, C. M.; Ko, C. H.; Mirkin, C. A. The impact of protein corona formation on the macrophage cellular uptake and biodistribution of spherical nucleic acids. Small 2017, 13, 1603847.

    Article  Google Scholar 

  50. Santiago-Sánchez, G. S.; Pita-Grisanti, V.; Quiñones-Díaz, B.; Gumpper, K.; Cruz-Monserrate, Z.; Vivas-Mejía, P. E. Biological functions and therapeutic potential of Lipocalin 2 in cancer. Int. J. Mol. Sci. 2020, 21, 4365.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Warszawska, J. M.; Gawish, R.; Sharif, O.; Sigel, S.; Doninger, B.; Lakovits, K.; Mesteri, I.; Nairz, M.; Boon, L.; Spiel, A. et al. Lipocalin 2 deactivates macrophages and worsens pneumococcal pneumonia outcomes. J. Clin. Invest. 2013, 123, 3363–3372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zumwalde, N. A.; Domae, E.; Mescher, M. F.; Shimizu, Y. ICAM-1-dependent homotypic aggregates regulate CD8 T cell effector function and differentiation during T cell activation. J. Immunol. 2013, 191, 3681–3693.

    Article  CAS  PubMed  Google Scholar 

  53. Cox, M. A.; Barnum, S. R.; Bullard, D. C.; Zajac, A. J. ICAM-1-dependent tuning of memory CD8 T-cell responses following acute infection. Proc. Natl. Acad. Sci. USA 2013, 110, 1416–1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhong, H. H.; Lin, H. T.; Pang, Q. N.; Zhuang, J. L.; Liu, X. L.; Li, X. L.; Liu, J. H.; Tang, J. Macrophage ICAM-1 functions as a regulator of phagocytosis in LPS induced endotoxemia. Inflamm. Res. 2021, 70, 193–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Crompton, J. G.; Narayanan, M.; Cuddapah, S.; Roychoudhuri, R.; Ji, Y.; Yang, W.; Patel, S. J.; Sukumar, M.; Palmer, D. C.; Peng, W. et al. Lineage relationship of CD8+ T cell subsets is revealed by progressive changes in the epigenetic landscape. Cell. Mol. Immunol. 2015, 13, 502–513.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cho, J.; Seo, J.; Lim, C. H.; Yang, L.; Shiratsuchi, T.; Lee, M. H.; Chowdhury, R. R.; Kasahara, H.; Kim, J. S.; Oh, S. P. Mitochondrial ATP transporter Ant2 depletion impairs erythropoiesis and B lymphopoiesis. Cell Death Differ. 2015, 22, 1437–1450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Saragovi, A.; Abramovich, I.; Omar, I.; Arbib, E.; Toker, O.; Gottlieb, E.; Berger, M. Systemic hypoxia inhibits T cell response by limiting mitobiogenesis via matrix substrate-level phosphorylation arrest. eLife 2020, 9, e56612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moon, J. S.; Da Cunha, F. F.; Huh, J. Y.; Andreyev, A. Y.; Lee, J.; Mahata, S. K.; Reis, F. C. G.; Nasamran, C. A.; Lee, Y. S. ANT2 drives proinflammatory macrophage activation in obesity. JCI Insight 2021, 22, e147033

    Article  Google Scholar 

  59. Beck, I. M.; Rückert, R.; Brandt, K.; Mueller, M. S.; Sadowski, T.; Brauer, R.; Schirmacher, P.; Mentlein, R.; Sedlacek, R. MMP19 is essential for T cell development and T cell-mediated cutaneous immune responses. PLoS One 2008, 3, e2343

    Article  PubMed  PubMed Central  Google Scholar 

  60. Matysiak-Kucharek, M.; Czajka, M.; Sawicki, K.; Kruszewski, M.; Kapka-Skrzypczak, L. Effect of nanoparticles on the expression and activity of matrix metalloproteinases. Nanotechnol. Rev. 2018, 7, 541–553.

    Article  CAS  Google Scholar 

  61. Huang, W. C.; Sala-Newby, G. B.; Susana, A.; Johnson, J. L.; Newby, A. C. Classical macrophage activation up-regulates several matrix metalloproteinases through mitogen activated protein kinases and nuclear factor-κB. PLoS One 2012, 7, e42507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Park, E. J.; Yi, J.; Kim, Y.; Choi, K.; Park, K. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol. Vitro 2010, 24, 872–878.

    Article  CAS  Google Scholar 

  63. Zuidema, J. M.; Rivet, C. J.; Gilbert, R. J.; Morrison, F. A. A protocol for rheological characterization of hydrogels for tissue engineering strategies. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 1063–1073.

    Article  PubMed  Google Scholar 

  64. Abramoff, M. D.; Magalhaes, P. J.; Ram, S. J. Image processing with ImageJ. Biophoton. Int. 2004, 11, 36–42.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the NIH for support of this research (P41EB028239). This material is based upon work subsidized by the National Science Foundation Graduate Research Fellowship (Nos. DGE-1746891 (SEW) and DGE-1746891 (SRS)). S. E. W. thanks the ARCS Metro Washington Chapter and the Siebel Scholars Foundation. Figure diagrams were created with biorender.com. The authors would also like to thank Vance Soares for his assistance with training in microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan J. Green.

Electronic Supplementary Material

12274_2024_6589_MOESM1_ESM.pdf

Particle elasticity influences polymeric artificial antigen presenting cell effectiveness in vivo via CD8+ T cell activation, macrophage uptake, and the protein corona

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Est-Witte, S.E., Shannon, S.R., Gong, D.H. et al. Particle elasticity influences polymeric artificial antigen presenting cell effectiveness in vivo via CD8+ T cell activation, macrophage uptake, and the protein corona. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6589-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6589-2

Keywords

Navigation