Skip to main content
Log in

Enhancing the electrochemical performance of Na metal anodes via local eutectic melting in porous Al-Cu alloy hosts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Sodium (Na) metal batteries (SMBs) have emerged as promising alternatives to lithium metal batteries for large-scale energy storage applications, owing to their cost-effectiveness, abundance, and favorable redox potential. However, the practical implementation of SMBs faces several challenges associated with the Na metal anode, including the formation of dendrites, low Coulombic efficiency, and capacity fading. Here, we propose a novel approach to enhance the electrochemical performance of Na metal anodes through a porous Al-Cu alloy host (PAC) fabricated by a local eutectic melting engineering. The local eutectic melting facilitates the development of a conductive network, offering mechanical support, and the porous structure provides abundant channels for the diffusion of Na ions and accommodates volume fluctuations in the Na metal during charge–discharge cycling. Moreover, the PAC exhibits a high average Coulombic efficiency of 99.8% at 1 mA·cm−2 for 1 mAh·cm−2 and a low voltage polarization of 19 mV during 500 cycles. This study provides valuable insight into the design and fabrication of high-performance Na metal anodes, which hold significant promise for the advancements of next-generation energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia, Y. C.; Zhou, P.; Kong, X.; Tian, J. K.; Zhang, W. L.; Yan, S. S.; Hou, W. H.; Zhou, H. Y.; Dong, H.; Chen, X. X. et al. Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries. Nat. Energy 2023, 8, 934–945.

    Article  CAS  Google Scholar 

  2. Zhuang, R.; Zhang, X. H.; Qu, C. Z.; Xu, X. S.; Yang, J. Y.; Ye, Q.; Liu, Z.; Kaskel, S.; Xu, F.; Wang, H. Q. Fluorinated porous frameworks enable robust anode-less sodium metal batteries. Sci. Adv. 2023, 9, eadh8060.

    Article  CAS  PubMed  Google Scholar 

  3. Xie, Y. Y.; Liu, C. Y.; Zheng, J. Q.; Li, H. X.; Zhang, L. Y.; Zhang, Z. A. NaF-rich protective layer on PTFE coating microcrystalline graphite for highly stable Na metal anodes. Nano Res. 2023, 16, 2436–2444.

    Article  CAS  Google Scholar 

  4. Yi, X. H.; Feng, Y. H.; Rao, A. M.; Zhou, J.; Wang, C. X.; Lu, B. G. Quasi-solid aqueous electrolytes for low-cost sustainable alkali-metal batteries. Adv. Mater. 2023, 35, 2302280.

    Article  CAS  Google Scholar 

  5. Chen, J. Y.; Wang, Y. Z.; Li, S. J.; Chen, H. R.; Qiao, X.; Zhao, J.; Ma, Y. W.; Alshareef, H. N. Porous metal current collectors for alkali metal batteries. Adv. Sci. 2023, 10, 2205695.

    Article  CAS  Google Scholar 

  6. Chen, J. Y.; Xu, X.; He, Q.; Ma, Y. W. Advanced current collectors for alkali metal anodes. Chem. Res. Chin. Univ. 2020, 36, 386–401.

    Article  CAS  Google Scholar 

  7. Zhang, L. J.; Zhang, T. T.; Zhao, Y. L.; Dong, G. F.; Lv, S. K.; Ma, S. L.; Song, S. X.; Quintana, M. Doping engineering of lithium-aluminum layered double hydroxides for high-efficiency lithium extraction from salt lake brines. Nano Res. 2024, 17, 1646–1654.

    Article  CAS  Google Scholar 

  8. Parameswaran, A. K.; Azadmanjiri, J.; Palaniyandy, N.; Pal, B.; Palaniswami, S.; Dekanovsky, L.; Wu, B.; Sofer, Z. Recent progress of nanotechnology in the research framework of all-solid-state batteries. Nano Energy 2023, 105, 107994.

    Article  Google Scholar 

  9. Zhang, W.; Yang, X. K.; Wang, J. C.; Zheng, J. L.; Yue, K.; Liu, T. F.; Wang, Y.; Nai, J. W.; Liu, Y. J.; Tao, X. Y. Rapidly constructing sodium fluoride-rich interface by pressure and diglyme-induced defluorination reaction for stable sodium metal anode. Small 2023, 19, 2207540.

    Article  CAS  Google Scholar 

  10. Soni, C. B.; Bera, S.; Sungjemmenla; Vineeth, S. K.; Kumar, H.; Kumar, V. Novel organic molecule enabling a highly-stable and reversible sodium metal anode for room-temperature sodium-metal batteries. J. Energy Stor. 2023, 71, 108132.

    Article  Google Scholar 

  11. Moorthy, M.; Moorthy, B.; Ganesan, B. K.; Saha, A.; Yu, S.; Kim, D. H.; Hong, S.; Park, S.; Kang, K.; Thangavel, R. et al. A series of hybrid multifunctional interfaces as artificial SEI layer for realizing dendrite free, and long-life sodium metal anodes. Adv. Funct. Mater. 2023, 33, 2300135.

    Article  CAS  Google Scholar 

  12. Lin, X. T.; Sun, Q.; Kim, J. T.; Li, X. F.; Zhang, J. J.; Sun, X. L. Superoxide-based Na-O2 batteries: Background, current status and future prospects. Nano Energy 2023, 112, 108466.

    Article  CAS  Google Scholar 

  13. Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.

    Article  CAS  Google Scholar 

  14. Qiu, Y. S.; Xu, J. Challenges and prospects for room temperature solid-state sodium-sulfur batteries. Nano Res. 2024, 17, 1402–1426.

    Article  CAS  Google Scholar 

  15. Xu, C. F.; Dong, Y. L.; Shen, Y. L.; Zhao, H. P.; Li, L. Q.; Shao, G. S.; Lei, Y. Fundamental understanding of nonaqueous and hybrid Na-CO2 batteries: Challenges and perspectives. Small 2023, 19, 2206445.

    Article  CAS  Google Scholar 

  16. Wang, H.; Bai, W. L.; Wang, H.; Kong, D. Z.; Xu, T. T.; Zhang, Z. F.; Zang, J. H.; Wang, X. C.; Zhang, S.; Tian, Y. T. et al. 3D printed Au/rGO microlattice host for dendrite-free sodium metal anode. Energy Stor. Mater. 2023, 55, 631–641.

    Google Scholar 

  17. Huang, B. C.; Sun, S. X.; Wan, J.; Zhang, W.; Liu, S. Y.; Zhang, J. W.; Yan, F. Y.; Liu, Y.; Xu, J.; Cheng, F. Y. et al. Ultrahigh nitrogen content carbon nanosheets for high stable sodium metal anodes. Adv. Sci. 2023, 10, 2206845.

    Article  CAS  Google Scholar 

  18. Li, S. J.; Chen, J. Y.; Liu, G. Y.; Wu, H. B.; Chen, H. R.; Li, M. S.; Shi, L.; Wang, Y. Z.; Ma, Y. W.; Zhao, J. Ultralight porous Cu nanowire aerogels as stable hosts for high Li-content metal anodes. ACS Appl. Mater. Interfaces 2022, 14, 56697–56706.

    Article  CAS  PubMed  Google Scholar 

  19. Cai, Z. J.; Tang, F.; Yang, Y.; Xu, S. T.; Xu, C.; Liu, L.; Rui, X. H. A multifunctional super-sodiophilic coating on aluminum current collector for high-performance anode-free Na-metal batteries. Nano Energy 2023, 116, 108814.

    Article  CAS  Google Scholar 

  20. Xu, J.; Yang, J. H.; Qiu, Y. S.; Jin, Y.; Wang, T. Y.; Sun, B.; Wang, G. X. Achieving high-performance sodium metal anodes: From structural design to reaction kinetic improvement. Nano Res. 2024, 17, 1288–1312.

    Article  CAS  Google Scholar 

  21. Lu, G. X.; Nai, J. W.; Luan, D. Y.; Tao, X. Y.; Lou, X. W. Surface engineering toward stable lithium metal anodes. Sci. Adv. 2023, 9, eadf1550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, C. Z.; Zheng, Y.; Chen, Z. N.; Zhang, R. R.; He, W.; Li, K. X.; Yan, S.; Cui, J. Q.; Fang, X. L.; Yan, J. W. et al. Robust anodefree sodium metal batteries enabled by artificial sodium formate interface. Adv. Energy Mater. 2023, 13, 2204125.

    Article  CAS  Google Scholar 

  23. Xia, X. M.; Yang, Y.; Chen, K. Z.; Xu, S. T.; Tang, F.; Liu, L.; Xu, C.; Rui, X. H. Enhancing interfacial strength and wettability for wide-temperature sodium metal batteries. Small 2023, 19, 2300907.

    Article  CAS  Google Scholar 

  24. Wang, C. Z.; Wu, K. H.; Cui, J. Q.; Fang, X. L.; Li, J.; Zheng, N. F. Robust room-temperature sodium-sulfur batteries enabled by a sandwich-structured MXene@ C/Polyolefin/MXene@C dual-functional separator. Small 2022, 18, 2106983.

    Article  CAS  Google Scholar 

  25. Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

    Article  CAS  Google Scholar 

  26. Kang, Q.; Zhuang, Z. C; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.

    Article  CAS  Google Scholar 

  27. Yuan, C. B.; Li, R.; Zhan, X. W.; Sprenkle, V. L.; Li, G. S. Stabilizing metallic Na anodes via sodiophilicity regulation: A review. Materials 2022, 15, 4636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao, W. Y.; Guo, M.; Zuo, Z. J.; Zhao, X. L.; Dou, H. L.; Zhang, Y. J.; Li, S. Y.; Wu, Z. C.; Shi, Y. Y.; Ma, Z. F. et al. Engineering sodium metal anode with sodiophilic bismuthide penetration for dendrite-free and high-rate sodium-ion battery. Engineering 2022, 11, 87–94.

    Article  CAS  Google Scholar 

  29. Chen, J. Y.; Wang, Y. Z.; Tian, Z. N.; Zhao, J.; Ma, Y. W.; Alshareef, H. N. Recent developments in three-dimensional Zn metal anodes for battery applications. InfoMat 2024, 6, e12485.

    Article  CAS  Google Scholar 

  30. Chen, J. Y.; Qiao, X.; Fu, W.; Han, X. R.; Wu, Q.; Wang, Y. Z.; Zhang, Y.; Shi, L.; Zhao, J.; Ma, Y. W. Lithiophilic hyperbranched Cu nanostructure for stable Li metal anodes. SmartMat 2023, 4, e1174.

    Article  CAS  Google Scholar 

  31. Luo, Y.; Yang, X. F.; Wang, C. H.; Fraser, A.; Zhang, H. Z.; Sun, X. L.; Li, X. F. Advanced metal anodes and their interface design toward safe metal batteries: A comprehensive review. Prog. Mater. Sci. 2023, 139, 101171.

    Article  CAS  Google Scholar 

  32. Chen, C.; Yao, W. J.; Tang, Y. B. Emerging solutions to enable the efficient use of sodium metal anodes: Progress and perspectives. Adv. Funct. Mater., in press, DOI: https://doi.org/10.1002/adfm.202310833.

  33. Wang, Z. X.; Huang, Z. X.; Wang, H.; Li, W. D.; Wang, B. Y.; Xu, J. M.; Xu, T. T.; Zang, J. H.; Kong, D. Z.; Li, X. J. et al. 3D-printed sodiophilic V2CTx/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity. ACS Nano 2022, 16, 9105–9116.

    Article  CAS  PubMed  Google Scholar 

  34. Li, Z. P.; Zhu, K. J.; Liu, P.; Jiao, L. F. 3D confinement strategy for dendrite-free sodium metal batteries. Adv. Energy Mater. 2022, 12, 2100359.

    Article  CAS  Google Scholar 

  35. Chi, S. S.; Qi, X. G.; Hu, Y. S.; Fan, L. Z. 3D flexible carbon felt host for highly stable sodium metal anodes. Adv. Energy Mater. 2018, 8, 1702764.

    Article  Google Scholar 

  36. Sun, B.; Xiong, P.; Maitra, U.; Langsdorf, D.; Yan, K.; Wang, C. Y.; Janek, J.; Schröder, D.; Wang, G. X. Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries. Adv. Mater. 2020, 32, 1903891.

    Article  CAS  Google Scholar 

  37. Zhang, J. L.; Wang, W. H.; Shi, R. Y.; Wang, W.; Wang, S. W.; Kang, F. Y.; Li, B. H. Three-dimensional carbon felt host for stable sodium metal anode. Carbon 2019, 155, 50–55.

    Article  CAS  Google Scholar 

  38. Liu, S.; Tang, S.; Zhang, X. Y.; Wang, A. X.; Yang, Q. H.; Luo, J. Y. Porous Al current collector for dendrite-free Na metal anodes. Nano Lett. 2017, 17, 5862–5868.

    Article  CAS  PubMed  Google Scholar 

  39. Kim, S. Y.; Park, J. S.; Nakajima, H. Fabrication of lotus-type porous aluminum through thermal decomposition method. Metall. Mater. Trans. A 2009, 40, 937–942.

    Article  Google Scholar 

  40. Asholt, P. Aluminium foam produced by the melt foaming route process, properties and applications. In Proceedings of International Conference on Metal Foam and Porous Metal Structures, 1999, pp 133–140.

  41. Hangai, Y.; Utsunomiya, T. Fabrication of porous aluminum by friction stir processing. Metall. Mater. Trans. A 2009, 40, 275–277.

    Article  Google Scholar 

  42. Xie, Z. K.; Yamada, Y.; Banno, T. Fabrication of micro porous aluminum by powder sintering. Mater. Sci. Forum 2007, 539-543, 2778–2781.

    Article  Google Scholar 

  43. Yasuda, H.; Ohnaka, I.; Fujimoto, S.; Takezawa, N.; Tsuchiyama, A.; Nakano, T.; Uesugi, K. Fabrication of aligned pores in aluminum by electrochemical dissolution of monotectic alloys solidified under a magnetic field. Scr. Mater. 2006, 54, 527–532.

    Article  CAS  Google Scholar 

  44. Wang, Y. Y.; Wang, Z. J.; Lei, D. N.; Lv, W.; Zhao, Q.; Ni, B.; Liu, Y.; Li, B. H.; Kang, F. Y.; He, Y. B. Spherical Li deposited inside 3D Cu skeleton as anode with ultrastable performance. ACS Appl. Mater. Interfaces 2018, 10, 20244–20249.

    Article  CAS  PubMed  Google Scholar 

  45. Chen, J. Y.; Li, S. J.; Qiao, X.; Wang, Y. Z.; Lei, L. N.; Lyu, Z.; Zhao, J.; Zhang, Y.; Liu, R. Q.; Liang, Q. H. et al. Integrated porous Cu host induced high-stable bidirectional Li plating/stripping behavior for practical Li metal batteries. Small 2022, 18, 2105999.

    Article  CAS  Google Scholar 

  46. Chen, J. Y.; Zhao, J.; Lei, L. N.; Li, P.; Chen, J.; Zhang, Y.; Wang, Y. Z.; Ma, Y. W.; Wang, D. Dynamic intelligent Cu current collectors for ultrastable lithium metal anodes. Nano Lett. 2020, 20, 3403–3410.

    Article  CAS  PubMed  Google Scholar 

  47. Kehl, W.; Fischmeister, H. F. Liquid Phase Sintering of Al-Cu Compacts. Powder Metall. 1980, 23, 113–119.

    Article  CAS  Google Scholar 

  48. Deng, Z. H.; Yin, H. Q.; Zhang, C.; Zhang, G. F.; Zhang, T.; Liu, Z. K.; Wang, H. B.; Qu, X. H. Sintering mechanism of Cu-9Al alloy prepared from elemental powders. Prog. Nat. Sci.: Mater. Int. 2019, 29, 425–431.

    Article  CAS  Google Scholar 

  49. Wang, S. H.; Yin, Y. X.; Zuo, T. T.; Dong, W.; Li, J. Y.; Shi, J. L.; Zhang, C. H.; Li, N. W.; Li, C. J.; Guo, Y. G. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Adv. Mater. 2017, 29, 1703729.

    Article  Google Scholar 

  50. Cao, Q. H.; Gao, Y.; Pu, J.; Zhao, X.; Wang, Y. X.; Chen, J. P.; Guan, C. Gradient design of imprinted anode for stable Zn-ion batteries. Nat. Commun. 2023, 14, 641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu, J. Y.; Ju, Z. Y.; Zhang, X.; Marschilok, A. C.; Takeuchi, K. J.; Wang, H. L.; Takeuchi, E. S.; Yu, G. H. Gradient design for high-energy and high-power batteries. Adv. Mater. 2022, 34, 2202780.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52102265, 91963119, and 22201135), Jiangsu Provincial Natural Science Foundation (Nos. BK20210604, BK20220385, and BK20230368), Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Nos. NY223099, NY223054, and NY222094), the Project of State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (Nos. GDX2022010010 and GZR2022010017), and the Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianyu Chen, Yanwen Ma or Jin Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, T., Wu, Q., Wang, C. et al. Enhancing the electrochemical performance of Na metal anodes via local eutectic melting in porous Al-Cu alloy hosts. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6588-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6588-3

Keywords

Navigation