Skip to main content
Log in

Programmable and reconfigurable humidity-driven actuators made with MXene (Ti3C2Tx)-cellulose nanofiber composites for biomimetic applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Smart actuators have a wide range of applications in bionics and energy conversion. The ability to reconfigure shape is essential for soft actuators to achieve various shapes and deformations, which is a crucial feature for next-generation actuators. Nonetheless, it is still an enormous challenge to establish a straightforward approach to creating programmable and reconfigurable actuators. MXene-cellulose nanofiber composite film (MCCF) with a brick-and-mortar hierarchical structure was produced through a vacuum filtration process. MCCF demonstrates impressive mechanical properties such as a tensile stress of 68 MPa and a Young’s modulus of 4.65 GPa. Besides, the MCCF highlights its potential for water-assisted shaping/welding due to the abundance of hydrogen bonds between MXene and cellulose nanofibers. MCCF also showcases capabilities as a humidity-driven actuator with a rapid response rate of 550°·s−1. Using the methods of water-assisted shaping/welding, several bionic actuators (such as flower, butterfly, and muscle) based on MCCF were designed, highlighting their versatility in applications of smart actuators. The research showcases the impressive capabilities of MXene-based actuators and offers beneficial insights for the advancement of future intelligent materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lan, R. C.; Shen, W. B.; Yao, W. H.; Chen, J. Y.; Chen, X. Y.; Yang, H. Bioinspired humidity-responsive liquid crystalline materials: From adaptive soft actuators to visualized sensors and detectors. Mater. Horiz. 2023, 10, 2824–2844.

    Article  CAS  PubMed  Google Scholar 

  2. Li, W. J.; Guan, Q. W.; Li, M.; Saiz, E.; Hou, X. Nature-inspired strategies for the synthesis of hydrogel actuators and their applications. Prog. Polym. Sci. 2023, 140, 101665.

    Article  CAS  Google Scholar 

  3. Zhang, Y. L.; Li, J. C.; Zhou, H.; Liu, Y. Q.; Han, D. D.; Sun, H. B. Electro-responsive actuators based on graphene. Innovation 2021, 2, 100168.

    PubMed  PubMed Central  Google Scholar 

  4. Wang, X. Q.; Chan, K. H.; Cheng, Y.; Ding, T. P.; Li, T. T.; Achavananthadith, S.; Ahmet, S.; Ho, J. S.; Ho, G. W. Somatosensory, light-driven, thin-film robots capable of integrated perception and motility. Adv. Mater. 2020, 32, 2000351.

    Article  CAS  Google Scholar 

  5. Wang, X. Q.; Tan, C. F.; Chan, K. H.; Lu, X.; Zhu, L. L.; Kim, S. W.; Ho, G. W. In-built thermo-mechanical cooperative feedback mechanism for self-propelled multimodal locomotion and electricity generation. Nat. Commun. 2018, 9, 3438.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kim, Y.; Zhao, X. H. Magnetic soft materials and robots. Chem. Rev. 2022, 122, 5317–5364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ling, Y.; Pang, W. B.; Li, X. P.; Goswami, S.; Xu, Z.; Stroman, D.; Liu, Y. C.; Fei, Q. H.; Xu, Y. D.; Zhao, G. G. et al. Laser-induced graphene for electrothermally controlled, mechanically guided, 3D assembly and human–soft actuators interaction. Adv. Mater. 2020, 32, 1908475.

    Article  CAS  Google Scholar 

  8. Dai, L.; Ma, M. S.; Xu, J. K.; Si, C. L.; Wang, X. H.; Liu, Z.; Ni, Y. H. All-lignin-based hydrogel with fast pH-stimuli responsiveness for mechanical switching and actuation. Chem. Mater. 2020, 32, 4324–4330.

    Article  CAS  Google Scholar 

  9. Zhang, Y. L.; Ma, J. N.; Liu, S.; Han, D. D.; Liu, Y. Q.; Chen, Z. D.; Mao, J. W.; Sun, H. B. A “Yin”–“Yang” complementarity strategy for design and fabrication of dual-responsive bimorph actuators. Nano Energy 2020, 68, 104302.

    Article  CAS  Google Scholar 

  10. Yu, K. Q.; Ji, X. Z.; Yuan, T. Y.; Cheng, Y.; Li, J. J.; Hu, X. Y.; Liu, Z. F.; Zhou, X.; Fang, L. Robust jumping actuator with a shrimp-shell architecture. Adv. Mater. 2021, 33, 2104558.

    Article  CAS  Google Scholar 

  11. Li, J. J.; Mou, L. L.; Zhang, R.; Sun, J. K.; Wang, R.; An, B. G.; Chen, H.; Inoue, K.; Ovalle-Robles, R.; Liu, Z. F. Multi-responsive and multi-motion bimorph actuator based on super-aligned carbon nanotube sheets. Carbon 2019, 148, 487–495.

    Article  CAS  Google Scholar 

  12. Wang, Y. L.; Cui, H. Q.; Zhao, Q. L.; Du, X. M. Chameleon-inspired structural-color actuators. Matter 2019, 1, 626–638.

    Article  Google Scholar 

  13. Chen, L.; Zhang, Y. L.; Zhang, K. H.; Li, F.; Duan, G. G.; Sun, Y.; Wei, X. S.; Yang, X. X.; Wang, F.; Zhang, C. M. et al. Multi-stimuli responsive, shape deformation, and synergetic biomimetic actuator. Chem. Eng. J. 2024, 480, 148205.

    Article  CAS  Google Scholar 

  14. Xu, L. L.; Zheng, H. W.; Xue, F. H.; Ji, Q. X.; Qiu, C. W.; Yan, Q.; Ding, R. J.; Zhao, X.; Hu, Y.; Peng, Q. Y. et al. Bioinspired multistimulus responsive MXene-based soft actuator with self-sensing function and various biomimetic locomotion. Chem. Eng. J. 2023, 463, 142392.

    Article  CAS  Google Scholar 

  15. Sun, J. K.; Guo, W. J.; Mei, G. K.; Wang, S. L.; Wen, K.; Wang, M. L.; Feng, D. Y.; Qian, D.; Zhu, M. F.; Zhou, X. et al. Artificial spider silk with buckled sheath by nano-pulley combing. Adv. Mater. 2023, 35, 2212112

    Article  CAS  Google Scholar 

  16. Khan, A. Q.; Yu, K. Q.; Li, J. T.; Leng, X. Q.; Wang, M. L.; Zhang, X. S.; An, B. G.; Fei, B.; Wei, W.; Zhuang, H. C. et al. Spider silk supercontraction-inspired cotton-hydrogel self-adapting textiles. Adv. Fiber Mater. 2022, 4, 1572–1583.

    Article  CAS  Google Scholar 

  17. Jia, T. J.; Wang, Y.; Dou, Y. Y.; Li, Y. W.; Jung De Andrade, M.; Wang, R.; Fang, S. L.; Li, J. J.; Yu, Z.; Qiao, R. et al. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles. Adv. Funct. Mater. 2019, 29, 1808241.

    Article  Google Scholar 

  18. Shin, B.; Ha, J.; Lee, M.; Park, K.; Park, G. H.; Choi, T. H.; Cho, K. J.; Kim, H. Y. Hygrobot: A self-locomotive ratcheted actuator powered by environmental humidity. Sci. Robot. 2018, 3, eaar2629.

    Article  PubMed  Google Scholar 

  19. Yang, Z. X.; An, Y.; He, Y. L.; Lian, X. D.; Wang, Y. P. A programmable actuator as synthetic earthworm. Adv. Mater. 2023, 35, 2303805.

    Article  CAS  Google Scholar 

  20. Li, X. Q.; Ma, B. R.; Dai, J. Y.; Sui, C.; Pande, D.; Smith, D. R.; Brinson, L. C.; Hsu, P. C. Metalized polyamide heterostructure as a moisture-responsive actuator for multimodal adaptive personal heat management. Sci. Adv. 2021, 7, eabj7906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, J.; Xu, H. Y.; Zhang, C. J.; Wu, R. L.; Fan, S. N.; Zhang, Y. P. Gradient structure enabled robust silk origami with moisture responsiveness. Chem. Eng. J. 2023, 454, 140021.

    Article  CAS  Google Scholar 

  22. Mao, T. H.; Liu, Z. Y.; Guo, X. X.; Wang, Z. F.; Liu, J. J.; Wang, T.; Geng, S. B.; Chen, Y.; Cheng, P.; Zhang, Z. J. Engineering covalent organic frameworks with polyethylene glycol as self-sustained humidity-responsive actuators. Angew. Chem., Int. Ed. 2023, 62, 202216318.

    Article  Google Scholar 

  23. Cao, J.; Zhou, Z. H.; Song, Q. C.; Chen, K. Y.; Su, G. H.; Zhou, T.; Zheng, Z.; Lu, C. H.; Zhang, X. X. Ultrarobust Ti3C2Tx MXene-based soft actuators via bamboo-inspired mesoscale assembly of hybrid nanostructures. ACS Nano 2020, 14, 7055–7065.

    Article  CAS  PubMed  Google Scholar 

  24. Ye, Y. J.; Zhu, Y. K.; Zhou, P. D.; Weng, M. C. Multi-functional and integrated actuator based on carbon nanotube-cellulose nanofiber composites. Cellulose 2023, 30, 7221–7234.

    Article  CAS  Google Scholar 

  25. Lu, H. H.; Wu, B. Y.; Yang, X. X.; Zhang, J. W.; Jian, Y. K.; Yan, H. Z.; Zhang, D. C.; Xue, Q. J.; Chen, T. Actuating supramolecular shape memorized hydrogel toward programmable shape deformation. Small 2020, 16, 2005461.

    Article  CAS  Google Scholar 

  26. Le, X. X.; Lu, W.; Zhang, J. W.; Chen, T. Recent progress in biomimetic anisotropic hydrogel actuators. Adv. Sci. 2019, 6, 1801584.

    Article  Google Scholar 

  27. Li, X. K.; Liu, J. Z.; Li, D. D.; Huang, S. Q.; Huang, K.; Zhang, X. X. Bioinspired multi-stimuli responsive actuators with synergistic color-and morphing-change abilities. Adv. Sci. 2021, 8, 2101295.

    Article  Google Scholar 

  28. Liu, Y. Q.; Chen, Z. D.; Han, D. D.; Mao, J. W.; Ma, J. N.; Zhang, Y. L.; Sun, H. B. Bioinspired soft robots based on the moisture-responsive graphene oxide. Adv. Sci. 2021, 8, 2002464.

    Article  CAS  Google Scholar 

  29. Wang, W.; Han, B.; Zhang, Y.; Li, Q.; Zhang, Y. L.; Han, D. D.; Sun, H. B. Laser-induced graphene tapes as origami and stick-on labels for photothermal manipulation via marangoni effect. Adv. Funct. Mater. 2021, 31, 2006179.

    Article  CAS  Google Scholar 

  30. Ma, J. N.; Zhang, Y. L.; Han, D. D.; Mao, J. W.; Chen, Z. D.; Sun, H. B. Programmable deformation of patterned bimorph actuator swarm. Natl. Sci. Rev. 2020, 7, 775–785.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lin, J.; Zhou, P. D.; Chen, Q. H.; Zhang, W.; Luo, Z. L.; Chen, L. Z. Reprogrammable, light-driven and sensing actuators based on Chinese ink composite: A synergetic use of shape-memory and self-healing strategies. Sens. Actuators B: Chem. 2022, 362, 131776.

    Article  CAS  Google Scholar 

  32. Lin, J.; Zhou, P. D.; Wen, Z. Y.; Zhang, W.; Luo, Z. L.; Chen, L. Z. Chinese ink: A programmable, dual-responsive and self-sensing actuator using a healing-assembling method. Nanoscale 2021, 13, 20134–20143.

    Article  CAS  PubMed  Google Scholar 

  33. Weng, M. C.; Xiao, Y. W.; Yao, L. Q.; Zhang, W.; Zhou, P. D.; Chen, L. Z. Programmable and self-healing light-driven actuators through synergetic use of water-shaping and -welding methods. ACS Appl. Mater. Interfaces 2020, 12, 55125–55133.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, J. F.; Liu, Y. Y.; Yang, Y. Q.; Wang, J. Q.; Kang, H.; Yang, H. P.; Zhang, D. J.; Cheng, Z. J.; Xie, Z. M.; Tan, H. F. et al. A weldable MXene film assisted by water. Matter 2022, 5, 1042–1055.

    Article  CAS  Google Scholar 

  35. Xi, P. Y.; Wu, L.; Quan, F. Y.; Xia, Y. Z.; Fang, K. J.; Jiang, Y. J. Scalable nano building blocks of waterborne polyurethane and nanocellulose for tough and strong bioinspired nanocomposites by a self-healing and shape-retaining strategy. ACS Appl. Mater. Interfaces 2022, 14, 24787–24797.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou, J. H.; Chen, H. M.; Zhou, P. D.; Peng, Q. L.; Guo, Q. H.; Wang, J.; Xu, Y.; You, M. H.; Weng, M. C. T3C2Tx, MXene nanosheet-functionalized leathers for versatile wearable electronics. ACS Appl. Nano Mater. 2023, 6, 18150–18164.

    Article  CAS  Google Scholar 

  37. Podsiadlo, P.; Kaushik, A. K.; Arruda, E. M.; Waas, A. M.; Shim, B. S.; Xu, J. D.; Nandivada, H.; Pumplin, B. G.; Lahann, J.; Ramamoorthy, A. et al. Ultrastrong and stiff layered polymer nanocomposites. Science 2007, 318, 80–83.

    Article  CAS  PubMed  Google Scholar 

  38. Wan, S. J.; Jiang, L.; Cheng, Q. F. Design principles of high-performance graphene films: Interfaces and alignment. Matter 2020, 3, 696–707.

    Article  Google Scholar 

  39. Zhou, T. Z.; Ni, H.; Wang, Y. L.; Wu, C.; Zhang, H.; Zhang, J. Q.; Tomsia, A. P.; Jiang, L.; Cheng, Q. F. Ultratough graphene-black phosphorus films. Proc. Natl. Acad. Sci. USA 2020, 117, 8727–8735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, D. D.; Yuan, Q.; Huang, L. Z.; Zhang, W.; Guo, W. Y.; Ma, M. G. Preparation of flexible N-doped carbon nanotube/MXene/PAN nanocomposite films with improved electrochemical properties. Ind. Eng. Chem. Res. 2021, 60, 15352–15363.

    Article  CAS  Google Scholar 

  41. Ventura-Cruz, S.; Tecante, A. Extraction and characterization of cellulose nanofibers from rose stems (Rosa spp.). Carbohyd. Polym. 2019, 220, 53–59.

    Article  CAS  Google Scholar 

  42. Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 2018, 12, 4583–4593.

    Article  CAS  PubMed  Google Scholar 

  43. Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. Merger of structure and material in nacre and bone-perspectives on de novo biomimetic materials. Prog. Mater. Sci. 2009, 54, 1059–1100.

    Article  CAS  Google Scholar 

  44. Weng, M. C.; Zhou, J. H.; Ye, Y. J.; Qiu, H. F.; Zhou, P. D.; Luo, Z. L.; Guo, Q. H. Self-chargeable supercapacitor made with MXene-bacterial cellulose nanofiber composite for wearable devices. J. Colloid Interface Sci. 2023, 647, 277–286.

    Article  CAS  PubMed  Google Scholar 

  45. Wegst, U. G. K.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36.

    Article  CAS  PubMed  Google Scholar 

  46. Luo, C.; Yeh, C. N.; Baltazar, J. M. L.; Tsai, C. L.; Huang, J. X. A cut-and-paste approach to 3D graphene-oxide-based architectures. Adv. Mater. 2018, 30, 1706229.

    Article  Google Scholar 

  47. Cheng, H. H.; Huang, Y. X.; Cheng, Q. L.; Shi, G. Q.; Jiang, L.; Qu, L. T. Self-healing graphene oxide based functional architectures triggered by moisture. Adv. Funct. Mater. 2017, 27, 1703096.

    Article  Google Scholar 

  48. Medhekar, N. V.; Ramasubramaniam, A.; Ruoff, R. S.; Shenoy, V. B. Hydrogen bond networks in graphene oxide composite paper: Structure and mechanical properties. ACS Nano 2010, 4, 2300–2306.

    Article  CAS  PubMed  Google Scholar 

  49. Zhao, Z.; Hwang, Y.; Yang, Y.; Fan, T. F.; Song, J. H.; Suresh, S.; Cho, N. J. Actuation and locomotion driven by moisture in paper made with natural pollen. Proc. Natl. Acad. Sci. USA 2020, 117, 8711–8718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wei, J.; Jia, S.; Wei, J.; Ma, C.; Shao, Z. Q. Tough and multifunctional composite film actuators based on cellulose nanofibers toward smart wearables. ACS Appl. Mater. Interfaces 2021, 13, 38700–38711.

    Article  CAS  PubMed  Google Scholar 

  51. Yang, L. Y.; Cui, J.; Zhang, L.; Xu, X. R.; Chen, X.; Sun, D. P. A moisture-driven actuator based on polydopamine-modified MXene/bacterial cellulose nanofiber composite film. Adv. Funct. Mater. 2021, 31, 2101378.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 52103138 and 52201043), the Natural Science Foundation of Fujian Province (Nos. 2023J01159 and 2022J01945), Starting Research Fund from Fujian University of Technology (No. GY-Z220199), and the Fuzhou City Science and Technology Cooperation Project (Nos. 2021-S-091 and 2022-R-003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huamin Chen, Guozhen Shen or Mingcen Weng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, S., Ye, Y., Zhou, P. et al. Programmable and reconfigurable humidity-driven actuators made with MXene (Ti3C2Tx)-cellulose nanofiber composites for biomimetic applications. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6542-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6542-4

Keywords

Navigation