Skip to main content
Log in

Enhanced electrocatalytic CO2 reduction to formic acid using nanocomposites of In2O3@C with graphene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In2O3 is an effective electrocatalyst to convert CO2 to formic acid (HCOOH), but its inherent poor electrical conductivity limits the efficient charge transfer during the reaction. Additionally, the tendency of In2O3 particles to agglomerate during synthesis further limits the exposure of active sites. Here we address these issues by leveraging the template effect of graphene oxide and employing InBDC as a self-sacrificing template for the pyrolysis synthesis of In2O3@C. The resulting In2O3@C/rGO-600 material features In2O3@C nanocubes uniformly anchored on a support of reduced graphene oxide (rGO), significantly enhancing the active sites exposure. The conductive rGO network facilitates charge transfer during electrocatalysis, and the presence of oxygen vacancies generated during pyrolysis, combined with the strong electron-donating ability of rGO, enhances the adsorption and activation of CO2. In performance evaluation, In2O3@C/rGO-600 exhibits a remarkable HCOOH Faradaic efficiency exceeding 94.0% over a broad potential window of −0.7 to −1.0 V (vs. reversible hydrogen electrode (RHE)), with the highest value of 97.9% at −0.9 V (vs. RHE) in a H-cell. Moreover, the material demonstrates an excellent cathodic energy efficiency of 71.6% at −0.7 V (vs. RHE). The study underscores the efficacy of uniformly anchoring metal oxide nanoparticles onto rGO for enhancing the electrocatalytic CO2 reduction performance of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liang, Z.; Song, L. P.; Sun, M. Z.; Huang, B. L.; Du, Y. P. Atomically dispersed indium and cerium sites for selectively electroreduction of CO2 to formate. Nano Res. 2023, 16, 8757–8764.

    Article  CAS  Google Scholar 

  2. Zhang, Z. Y.; Bian, L.; Tian, H.; Liu, Y.; Bando, Y.; Yamauchi, Y.; Wang, Z. L. Tailoring the surface and interface structures of copper-based catalysts for electrochemical reduction of CO2 to ethylene and ethanol. Small 2022, 18, 2107450.

    Article  CAS  Google Scholar 

  3. Yang, D. R.; Wang, X. 2D n-conjugated metal-organic frameworks for CO2 electroreduction. SmartMat 2022, 3, 54–67

    Article  CAS  Google Scholar 

  4. Verma, S.; Kim, B.; Jhong, H. R. M.; Ma, S. C.; Kenis, P. J. A. A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 2016, 9, 1972–1979.

    Article  CAS  PubMed  Google Scholar 

  5. Sun, C. Y.; Li, W.; Wang, H. Q. Cascade electrolysis and thermocatalysis: A reliable system for upgrading C1 to C4 hydrocarbons. Rare Met. 2024, 43, 410–412.

    Article  CAS  Google Scholar 

  6. Guan, Y. Y.; Zhang, X. R.; Zhang, Y. X.; Karsili, T. N. V.; Fan, M. Y.; Liu, Y. Y.; Marchetti, B.; Zhou, X. D. Achieving high selectivity towards electro-conversion of CO2 using In-doped Bi derived from metal-organic frameworks. J. Colloid Interface Sci. 2022, 612, 235–245.

    Article  CAS  PubMed  Google Scholar 

  7. Yang, X. F.; Wang, Q. R.; Chen, F. R.; Zang, H.; Liu, C. J.; Yu, N.; Geng, B. Y. In-sttu electrochemical restructuring of Cu2BiSx solid solution into Bi/CuxSy heterointerfaces enabling stabilization intermediates for high-performance CO2 electroreduction to formate. Nano Res. 2023, 16, 7974–7981

    Article  CAS  Google Scholar 

  8. Gao, J. J.; Shiong, S. C. S.; Liu, Y. Reduction of CO2 to chemicals and fuels: Thermocatalysis versus electrocatalysis. Chem. Eng. J. 2023, 472, 145033.

    Article  CAS  Google Scholar 

  9. Jiang, Y. L.; Chen, Q. S.; Wang, D.; Li, X.; Xu, Y. P.; Xu, Z. N.; Guo, G. C. In situ structural evolution of BiOCOOH nanowires and their performance towards electrocatalytic CO2 reduction. Nano Res. 2023, 16, 6661–6669

    Article  CAS  Google Scholar 

  10. Wang, S. W.; Gao, Q.; Xu, C.; Jiang, S.; Zhang, M. Y.; Yin, X. J.; Peng, H. Q.; Liu, B.; Song, Y. F. Molecular surface functionalization of In2O3 to tune interfacial microenvironment for enhanced catalytic performance of CO2 electroreduction. Nano Res., in press, https://doi.org/10.1007/s12274-023-6019-x.

  11. Yang, W. F.; Zhao, Y.; Chen, S.; Ren, W. H.; Chen, X. J.; Jia, C.; Su, Z.; Wang, Y.; Zhao, C. Defective indium/indium oxide heterostructures for highly selective carbon dioxide electrocatalysis. Inorg. Chem. 2020, 59, 12437–12444.

    Article  CAS  PubMed  Google Scholar 

  12. Chen, Z. P.; Yu, G.; Li, B.; Zhang, X. X.; Jiao, M. Y.; Wang, N. L.; Zhang, X. P.; Liu, L. C. In situ carbon encapsulation confined nickel-doped indium oxide nanocrystals for boosting CO2 electroreduction to the industrial level. ACS Catal. 2021, 11, 14596–14604

    Article  CAS  Google Scholar 

  13. Wang, Z. T.; Zhou, Y. S.; Liu, D. Y.; Qi, R. J.; Xia, C. F.; Li, M. T.; You, B.; Xia, B. Y. Carbon- confined indium oxides for efficient carbon dioxide reduction in a solid-state electrolyte flow cell. Angew. Chem., Int. Ed. 2022, 61, e202200552.

    Article  CAS  Google Scholar 

  14. Wulan, B.; Cao, X. Y.; Tan, D. X.; Ma, J. Z.; Zhang, J. T. To stabilize oxygen on In/In2O3 heterostructure via joule heating for efficient electrocatalytic CO2 reduction. Adv. Funct. Mater. 2023, 33, 2209114.

    Article  CAS  Google Scholar 

  15. Zhao, X. L.; Huang, M.; Deng, B. W.; Li, K. L.; Li, F.; Dong, F. Interfacial engineering of In2O3/InN heterostructure with promoted charge transfer for highly efficient CO2 reduction to formate. Chem. Eng. J. 2022, 437, 135114.

    Article  CAS  Google Scholar 

  16. Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. ngginerrigg unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pei, J. J.; Yang, L.; Lin, J.; Zhang, Z. D.; Sun, Z. Y.; Wang, D. S.; Chen, W. X. Integrating host design and tailored electronic effects of yolk-shell Zn-Mn diatomic sites for efficient CO2 electroreduction. Angew. Chem., Int. Ed. 2024, 63, e202316123.

    Article  CAS  Google Scholar 

  18. Wang, Q. R.; Yang, X. F.; Zang, H.; Chen, F. R.; Wang, C.; Yu, N.; Geng, B. Y. Metal-organic framework-derived BiIn bimetallic oxide nanoparticles embedded in carbon networks for efficient electrochemical reduction of CO2 to formate. Inorg. Chem. 2022, 61, 12003–12011.

    Article  CAS  PubMed  Google Scholar 

  19. Qiu, C.; Qian, K.; Yu, J.; Sun, M. Z.; Cao, S. F.; Gao, J. Q.; Yu, R. X.; Fang, L. Z.; Yao, Y. W.; Lu, X. Q. et al. MOF-transformed In2O3-x@C nanocorn electrocatalyst for efficient CO2 reduction to HCOOH. Nano-Micro Lett. 2022, 14, 167.

    Article  CAS  Google Scholar 

  20. Li, J. Y.; Zhu, M. H.; Han, Y. F. Recent advances in electrochemical CO2 reduction on indium-based catalysts. ChemCatChem 2021, 13, 514–531.

    Article  CAS  Google Scholar 

  21. Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.

    Article  CAS  Google Scholar 

  22. Zhou, J.; Li, L. Y.; Gao, X. J.; Wang, H. Q. Clusterphene: A new two-dimensional structure from cluster self-assembly. Nano Res. 2022, 15, 5790–5791.

    Article  CAS  Google Scholar 

  23. Zang, D. J.; Gao, X. J.; Li, L. Y.; Wei, Y. G.; Wang, H. Q. Confined interface engineering of self-supported Cu@N-doped graphene for electrocatalytic CO2 reduction with enhanced selectivity towards ethanol. Nano Res. 2022, 15, 8872–8879.

    Article  CAS  Google Scholar 

  24. Tian, J.; Huang, X. H.; Wu, W. Graphene- based stand-alone networks for efficient solar steam generation. Ind. Eng. Chem. Res. 2020, 59, 1135–1141.

    Article  CAS  Google Scholar 

  25. Pan, B. B.; Yuan, G. T.; Zhao, X.; Han, N.; Huang, Y.; Feng, K.; Cheng, C.; Zhong, J.; Zhang, L.; Wang, Y. H. et al. Highly dispersed indium oxide nanoparticles supported on carbon nanorods enabling efficient electrochemical CO2 reduction. Small Sci. 2021, 1, 2100029.

    Article  CAS  Google Scholar 

  26. Muschi, M.; Serre, C. Progress and challenges of graphene oxide/metal-organic composites. Coord. Chem. Rev. 2019, 387, 262–272.

    Article  CAS  Google Scholar 

  27. Xiao, P. T.; Li, S.; Yu, C. B.; Wang, Y.; Xu, Y. X. Interface engineering between the metal-organic framework nanocrystal and graphene toward ultrahigh potassium-ion storage performance. ACS Nano 2020, 14, 10210–10218.

    Article  CAS  PubMed  Google Scholar 

  28. Qiu, X.; Wang, X.; Li, Y. W. Controlled growth of dense and ordered metal-organic framework nanoparticles on graphene oxide. Chem. Commun. 2015, 51, 3874–3877.

    Article  CAS  Google Scholar 

  29. Zhang, J.; Li, Z.; Qi, X. L.; Zhang, W.; Wang, D. Y. Size tailored bimetallic metal-organic framework (MOF) on graphene oxide with sandwich-like structure as functional Nano-hybrids for improving fire safety of epoxy. Compos. Part B: Eng. 2020, 188, 107881.

    Article  CAS  Google Scholar 

  30. Volkringer, C.; Meddouri, M.; Loiseau, T.; Guillou, N.; Marrot, J.; Férey, G.; Haouas, M.; Taulelle, F.; Audebrand, N.; Latroche, M. The Kagomé topology of the gallium and indium metal-organic framework types with a MIL-68 structure: Synthesis, XRD, solidstate NMR characterizations, and hydrogen adsorption. Inorg. Chem. 2008, 47, 11892–11901.

    Article  CAS  PubMed  Google Scholar 

  31. Liu, N.; Huang, W. Y.; Zhang, X. D.; Tang, L.; Wang, L.; Wang, Y. X.; Wu, M. H. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Appl. Catal., B: Environ. 2018, 221, 119–128.

    Article  CAS  Google Scholar 

  32. Wang, Y. D.; Ding, J. N.; Zhao, J.; Wang, J. J.; Han, X. P.; Deng, Y. D.; Hu, W. B. Selective electrocatalytic reduction of CO2 to formate via carbon-shell-encapsulated In2O3 nanoparticles/graphene nanohybrids. J. Mater. Sci. Technol. 2022, 121, 220–226.

    Article  CAS  Google Scholar 

  33. Li, R.; Sun, L. M.; Zhan, W. W.; Li, Y. A.; Wang, X. J.; Han, X. G. Engineering an effective noble-metal-free photocatalyst for hydrogen evolution: Hollow hexagonal porous micro-rods assembled from In2O3@carbon core-shell nanoparticles. J. Mater. Chem. A 2018, 6, 15747–15754.

    Article  CAS  Google Scholar 

  34. Kou, X. L.; Zhang, Y. N.; Niu, D. F.; Han, X. F.; Ma, L. B.; Xu, J. Polyethylene oxide-engineered graphene with rich mesopores anchoring Bi2O3 nanoparticles for boosting CO2 electroreduction to formate. Electrochim. Acta 2022, 433, 141256.

    Article  CAS  Google Scholar 

  35. Cao, Z.; Kim, D.; Hong, D. C.; Yu, Y.; Xu, J.; Lin, S.; Wen, X. D.; Nichols, E. M.; Jeong, K.; Reimer, J. A. et al. A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction. J. Am. Chem. Soc. 2016, 138, 8120–8125.

    Article  CAS  PubMed  Google Scholar 

  36. Qi, Y. H.; Song, L. Z.; Ouyang, S. X.; Liang, X. C.; Ning, S. B.; Zhang, Q. Q.; Ye, J. H. Photoinduced defect engineering: Enhanced photothermal catalytic performance of 2D black In2O3-x nanosheets with bifunctional oxygen vacancies. Adv. Mater. 2020, 32, 1903915.

    Article  CAS  Google Scholar 

  37. Ni, W.; Li, C. X.; Zang, X. G.; Xu, M.; Huo, S. L.; Liu, M. Q.; Yang, Z. Y.; Yan, Y. M. Efficient electrocatalytic reduction of CO2 on CuxO decorated graphene oxides: An insight into the role of multivalent Cu in selectivity and durability. Appl. Catal., B: Environ. 2019, 259, 118044.

    Article  CAS  Google Scholar 

  38. Huang, Y. D.; Yu, R. T.; Mao, G. Q.; Yu, W. J.; Ding, Z. Y.; Cao, Y. B.; Zheng, J. C.; Chu, D. W.; Tong, H. Unique FeP@C with polyhedral structure in-situ coated with reduced graphene oxide as an anode material for lithium ion batteries. J. Alloys Compd. 2020, 841, 155670.

    Article  CAS  Google Scholar 

  39. Shanmugasundaram, A.; Gundimeda, V.; Hou, T. F.; Lee, D. W. Realizing synergy between In2O3 nanocubes and nitrogen-doped reduced graphene oxide: An excellent nanocomposite for the selective and sensitive detection of CO at ambient temperatures. ACS Appl. Mater. Interfaces 2017, 9, 31728–31740.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao, J.; Deng, J.; Han, J.; Imhanria, S.; Chen, K. Y.; Wang, W. Effective tunable syngas generation via CO2 reduction reaction by non-precious Fe-N-C electrocatalyst. Chem. Eng. J. 2020, 389, 124323.

    Article  CAS  Google Scholar 

  41. Wang, W. H.; Wang, X. S.; Ma, Z. G.; Wang, Y.; Yang, Z. X.; Zhu, J. X.; Lv, L.; Ning, H.; Tsubaki, N.; Wu, M. B. Carburized In2O3 nanorods endow CO2 electroreduction to formate at 1 Acm−2. ACS Catal. 2023, 13, 796–802.

    Article  CAS  Google Scholar 

  42. Zhang, B.; Chang, Y.; Zhai, P. L.; Wang, C.; Gao, J. F.; Sun, L. C.; Hou, J. G. Enriching metal-oxygen species and phosphate modulating of active sites for robust electrocatalytical CO2 reduction. Adv. Mater. 2023, 35, 2304379.

    Article  CAS  Google Scholar 

  43. Zhao, Y.; Liang, J. J.; Wang, C. Y.; Ma, J. M.; Wallace, G. G. Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide. Adv. Energy Mater. 2018, 8, 1702524.

    Article  Google Scholar 

  44. Zhang, A.; He, R.; Li, H. P.; Chen, Y. J.; Kong, T. Y.; Li, K.; Ju, H. X.; Zhu, J. F.; Zhu, W. G.; Zeng, J. Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 10954–10958.

    Article  CAS  Google Scholar 

  45. Wei, G. C.; Zhang, Q. L.; Zhang, D. H.; Wang, J.; Tang, T.; Wang, H. M.; Liu, X.; Song, Z. X.; Ning, P. The influence of annealing temperature on copper-manganese catalyst towards the catalytic combustion of toluene: The mechanism study. Appl. Surf. Sci. 2019, 497, 143777.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Joint Key Program of National Natural Science Foundation of China (No. U22B20147).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guolei Xiang or Junsu Jin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Gao, S., Yang, C. et al. Enhanced electrocatalytic CO2 reduction to formic acid using nanocomposites of In2O3@C with graphene. Nano Res. 17, 5031–5039 (2024). https://doi.org/10.1007/s12274-024-6517-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6517-5

Keywords

Navigation