Skip to main content
Log in

Single quantum dot spectroscopy for exciton dynamics

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Colloidal semiconductor quantum dots (QDs) exhibit broadband light absorption, continuously tunable narrowband emission, and high photoluminescence quantum yields. As such, they represent promising materials for use in light-emitting diodes, solar cells, detectors, and lasers. Single-QD spectroscopy can remove the ensemble averaging to reveal the diverse optical properties and exciton dynamics of QD materials at the single-particle level. The results of relevant research can serve as guidelines for materials science community in tailoring the synthesis of QDs to develop novel applications. This paper reviews recent progress in exciton dynamics revealed by single-QD spectroscopy, focusing on the exciton and multi-exciton dynamics of single colloidal CdSe-based QDs and perovskite QDs. Finally, potential future directions for single-QD spectroscopy and exciton dynamics are briefly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pietryga, J. M.; Park, Y. S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 2016, 116, 10513–10622.

    Article  CAS  PubMed  Google Scholar 

  2. Efros, A. L.; Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 2016, 11, 661–671.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. García de Arquer, F. P.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.

    Article  PubMed  Google Scholar 

  4. Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Building devices from colloidal quantum dots. Science 2016, 353, aac5523.

    Article  PubMed  Google Scholar 

  5. Carey, G. H.; Abdelhady, A. L.; Ning, Z. J.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Colloidal quantum dot solar cells. Chem. Rev. 2015, 115, 12732–12763.

    Article  CAS  PubMed  Google Scholar 

  6. Lin, Y. H.; Sakai, N.; Da, P. M.; Wu, J. Y.; Sansom, H. C.; Ramadan, A. J.; Mahesh, S.; Liu, J. L.; Oliver, R. D. J.; Lim, J. et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 2020, 369, 96–102.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Bao, J.; Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 2015, 523, 67–70.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Liu, L. G.; Deng, L. G.; Huang, S.; Zhang, P.; Linnros, J.; Zhong, H. Z.; Sychugov, I. Photodegradation of organometal hybrid perovskite nanocrystals: Clarifying the role of oxygen by single-dot photoluminescence. J. Phys. Chem. Lett. 2019, 10, 864–869.

    Article  CAS  PubMed  Google Scholar 

  9. Krieg, F.; Ong, Q. K.; Burian, M.; Rainò, G.; Naumenko, D.; Amenitsch, H.; Süess, A.; Grotevent, M. J.; Krumeich, F.; Bodnarchuk, M. I. et al. Stable ultraconcentrated and ultradilute colloids of CsPbX3 (X = Cl, Br) nanocrystals using natural lecithin as a capping ligand. J. Am. Chem. Soc. 2019, 141, 19839–19849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaur, G.; Babu, K. J.; Ghorai, N.; Goswami, T.; Maiti, S.; Ghosh, H. N. Polaron-mediated slow carrier cooling in a type-1 3D/0D CsPbBr3@Cs4PbBr6 core-shell perovskite system. J. Phys. Chem. Lett. 2019, 10, 5302–5311.

    Article  CAS  PubMed  Google Scholar 

  11. Wu, R. X.; Luo, J. J.; Guo, X. J.; Wang, X. S.; Ma, Z. H.; Li, B.; Cheng, L. Y.; Miao, X. Y. Phosphorescence quenching study of Cu(II)-ions-induced Mn-doped ZnS quantum dots revealed by intensity- and lifetime-resolved spectroscopy. Chem. Phys. Lett. 2021, 781, 138960.

    Article  CAS  Google Scholar 

  12. Fan, Q. X.; Yan, Z.; Zhou, H.; Yao, Y. G.; Wang, Z. K.; Gao, Y. N.; Wang, Y. L.; Lu, S. B.; Liu, M.; Ji, W. Near-infrared multiphoton absorption and third harmonic generation with CsPbBr3 quantum dots embedded in micro-particles of metal-organic frameworks. J. Mater. Chem. C 2023, 11, 5788–5795.

    Article  CAS  Google Scholar 

  13. Zhou, J. J.; Chizhik, A. I.; Chu, S.; Jin, D. Y. Single-particle spectroscopy for functional nanomaterials. Nature 2020, 579, 41–50.

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Bai, X. Q.; Li, H. Y.; Peng, Y. G.; Zhang, G. F.; Yang, C. G.; Guo, W. L.; Han, X.; Li, J. L.; Chen, R. Y.; Qin, C. B. et al. Role of aspect ratio in the photoluminescence of single CdSe/CdS dot-in-rods. J. Phys. Chem. C 2022, 126, 2699–2707.

    Article  CAS  Google Scholar 

  15. Liang, X. L.; Qin, C. B.; Qiao, Z. X.; Kang, W. H.; Yin, H. L.; Dong, S.; Li, X. D.; Wang, S.; Su, X. L.; Zhang, G. F. et al. Optical interference effect in the hybrid quantum dots/two-dimensional materials: Photoluminescence enhancement and modulation. Opt. Express 2022, 30, 26557–26569.

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Zhang, G. F.; Yang, C. G.; Ge, Y.; Peng, Y. G.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Zhang, L.; Zhong, H. Z.; Zheng, Y. J. et al. Influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods. Front. Phys. 2019, 14, 63601.

    Article  ADS  Google Scholar 

  17. Rabouw, F. T.; de Mello Donega, C. Excited-state dynamics in colloidal semiconductor nanocrystals. Top. Curr. Chem. 2016, 374, 58.

    Article  Google Scholar 

  18. Yao, Y. G.; Zhu, Y. K.; Hu, A.; Gao, Y. N. Temperature-regulated in-plane exciton dynamics in CdSe/CdSeS colloidal quantum well heterostructures. ACS Photonics 2023, 10, 4052–4060.

    Article  CAS  Google Scholar 

  19. Hu, F. R.; Lv, B. H.; Yin, C. Y.; Zhang, C. F.; Wang, X. Y.; Lounis, B.; Xiao, M. Carrier multiplication in a single semiconductor nanocrystal. Phys. Rev. Lett. 2016, 116, 106404.

    Article  ADS  PubMed  Google Scholar 

  20. Ihara, T. Biexciton cascade emission reveals absolute absorption cross section of single semiconductor nanocrystals. Phys. Rev. B 2016, 93, 235442.

    Article  ADS  Google Scholar 

  21. Senellart, P.; Solomon, G.; White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 2017, 12, 1026–1039.

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Klimov, V. I. Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of Auger recombination and carrier multiplication. Annu. Rev. Condens. Matter Phys. 2014, 5, 285–316.

    Article  ADS  CAS  Google Scholar 

  23. Schimpf, C.; Reindl, M.; Huber, D.; Lehner, B.; Covre Da Silva, S. F.; Manna, S.; Vyvlecka, M.; Walther, P.; Rastelli, A. Quantum cryptography with highly entangled photons from semiconductor quantum dots. Sci. Adv. 2021, 7, eabe8905.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cui, J.; Beyler, A. P.; Bischof, T. S.; Wilson, M. W. B.; Bawendi, M. G. Deconstructing the photon stream from single nanocrystals: From binning to correlation. Chem. Soc. Rev. 2014, 43, 1287–1310.

    Article  CAS  PubMed  Google Scholar 

  25. Efros, A. L.; Rosen, M. Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys. Rev. Lett. 1997, 78, 1110–1113.

    Article  ADS  CAS  Google Scholar 

  26. Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 1996, 383, 802–804.

    Article  ADS  CAS  Google Scholar 

  27. Han, S. P.; Qin, C. B.; Song, Y. R.; Dong, S.; Lei, Y.; Wang, S.; Su, X. L.; Wei, A. N.; Li, X. D.; Zhang, G. F. et al. Photostable fluorescent molecules on layered hexagonal boron nitride: Ideal single-photon sources at room temperature. J. Chem. Phys. 2021, 155, 244301.

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Li, B.; Zhang, G. F.; Chen, R. Y.; Qin, C. B.; Hu, J. Y.; Xiao, L. T.; Jia, S. T. Research progress of single quantum-dot spectroscopy and exciton dynamics. Acta Phys. Sin. 2022, 71, 067802.

    Article  Google Scholar 

  29. Chen, R. Y.; Xia, B.; Zhou, W. J.; Zhang, G. F.; Qin, C. B.; Hu, J. Y.; Scheblykin, I. G.; Xiao, L. T. Environment-dependent metastable nonradiative recombination centers in perovskites revealed by photoluminescence blinking. Adv. Photonics Res. 2022, 3, 2100271.

    Article  CAS  Google Scholar 

  30. Nazir, Z.; Lun, Y.; Li, J. L.; Yang, G. L.; Liu, M. R.; Li, S. Q.; Tang, G.; Zhang, G. F.; Hong, J. W.; Xiao, L. T. et al. Breaking the symmetry of colloidal 2D nanoplatelets: Twist induced quantum coupling. Nano Res. 2023, 16, 10522–10529.

    Article  ADS  CAS  Google Scholar 

  31. Chen, R. Y.; Xia, B.; Zhou, W. J.; Guan, W. L.; Zhang, G. F.; Qin, C. B.; Hu, J. Y.; Xiao, L. T.; Jia, S. T. Underestimated effect of the polymer encapsulation process on the photoluminescence of perovskite revealed by in situ single-particle detection. Opt. Express 2021, 29, 1851–1869.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Brokmann, X.; Coolen, L.; Dahan, M.; Hermier, J. P. Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission. Phys. Rev. Lett. 2004, 93, 107403.

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Meng, R. Y.; Qin, H. Y.; Niu, Y.; Fang, W.; Yang, S.; Lin, X.; Cao, H. J.; Ma, J. L.; Lin, W. Z.; Tong, L. M. et al. Charging and discharging channels in photoluminescence intermittency of single colloidal CdSe/CdS core/shell quantum dot. J. Phys. Chem. Lett. 2016, 7, 5176–5182.

    Article  CAS  PubMed  Google Scholar 

  34. Qin, H. Y.; Meng, R. Y.; Wang, N.; Peng, X. G. Photoluminescence intermittency and photo-bleaching of single colloidal quantum dot. Adv. Mater. 2017, 29, 1606923.

    Article  Google Scholar 

  35. Yang, C. G.; Xiao, R. L.; Zhou, S. R.; Yang, Y. G.; Zhang, G. F.; Li, B.; Guo, W. L.; Han, X.; Wang, D. H.; Bai, X. Q. et al. Efficient, stable, and photoluminescence intermittency-free CdSe-based quantum dots in the full-color range. ACS Photonics 2021, 8, 2538–2547.

    Article  CAS  Google Scholar 

  36. Park, Y. S.; Bae, W. K.; Pietryga, J. M.; Klimov, V. I. Auger recombination of biexcitons and negative and positive trions in individual quantum dots. ACS Nano 2014, 8, 7288–7296.

    Article  CAS  PubMed  Google Scholar 

  37. Hou, X. Q.; Kang, J.; Qin, H. Y.; Chen, X. W.; Ma, J. L.; Zhou, J. H.; Chen, L. P.; Wang, L. J.; Wang, L. W.; Peng, X. G. Engineering Auger recombination in colloidal quantum dots via dielectric screening. Nat. Commun. 2019, 10, 1750.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. Hou, X. Q.; Qin, H. Y.; Peng, X. G. Enhancing dielectric screening for Auger suppression in CdSe/CdS quantum dots by epitaxial growth of ZnS shell. Nano Lett. 2021, 21, 3871–3878.

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Park, Y. S.; Guo, S. J.; Makarov, N. S.; Klimov, V. I. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 2015, 9, 10386–10393.

    Article  CAS  PubMed  Google Scholar 

  40. Yarita, N.; Tahara, H.; Ihara, T.; Kawawaki, T.; Sato, R.; Saruyama, M.; Teranishi, T.; Kanemitsu, Y. Dynamics of charged excitons and biexcitons in CsPbBr3 perovskite nanocrystals revealed by femtosecond transient-absorption and single-dot luminescence spectroscopy. J. Phys. Chem. Lett. 2017, 8, 1413–1418.

    Article  CAS  PubMed  Google Scholar 

  41. Becker, M. A.; Vaxenburg, R.; Nedelcu, G.; Sercel, P. C.; Shabaev, A.; Mehl, M. J.; Michopoulos, J. G.; Lambrakos, S. G.; Bernstein, N.; Lyons, J. L. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 2018, 553, 189–193.

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Yin, C. Y.; Chen, L. Y.; Song, N.; Lv, Y.; Hu, F. R.; Sun, C.; Yu, W. W.; Zhang, C. F.; Wang, X. Y.; Zhang, Y. et al. Bright-exciton fine-structure splittings in single perovskite nanocrystals. Phys. Rev. Lett. 2017, 119, 026401.

    Article  ADS  PubMed  Google Scholar 

  43. Lei, H. X.; Liu, S. J.; Li, J. Z.; Li, C. Y.; Qin, H. Y.; Peng, X. G. Band-edge energy levels of dynamic excitons in cube-shaped CdSe/CdS core/shell nanocrystals. ACS Nano 2023, 17, 21962–21972.

    Article  PubMed  Google Scholar 

  44. Li, J. L.; Wang, D. F.; Zhang, G. F.; Yang, C. G.; Guo, W. L.; Han, X.; Bai, X. Q.; Chen, R. Y.; Qin, C. B.; Hu, J. Y. et al. The role of surface charges in the blinking mechanisms and quantum-confined stark effect of single colloidal quantum dots. Nano Res. 2022, 15, 7655–7661.

    Article  ADS  CAS  Google Scholar 

  45. Frantsuzov, P. A.; Volkán-Kacsó, S.; Jankó, B. Model of fluorescence intermittency of single colloidal semiconductor quantum dots using multiple recombination centers. Phys. Rev. Lett. 2009, 103, 207402.

    Article  ADS  PubMed  Google Scholar 

  46. Frantsuzov, P. A.; Marcus, R. A. Explanation of quantum dot blinking without the long-lived trap hypothesis. Phys. Rev. B 2005, 72, 155321.

    Article  ADS  Google Scholar 

  47. Podshivaylov, E. A.; Kniazeva, M. A.; Tarasevich, A. O.; Eremchev, I. Y.; Naumov, A. V.; Frantsuzov, P. A. A quantitative model of multi-scale single quantum dot blinking. J. Mater. Chem. C 2023, 11, 8570–8576.

    Article  CAS  Google Scholar 

  48. Yuan, G. C.; Gómez, D. E.; Kirkwood, N.; Boldt, K.; Mulvaney, P. Two mechanisms determine quantum dot blinking. ACS Nano 2018, 12, 3397–3405.

    Article  CAS  PubMed  Google Scholar 

  49. Galland, C.; Ghosh, Y.; Steinbrück, A.; Sykora, M.; Hollingsworth, J. A.; Klimov, V. I.; Htoon, H. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 2011, 479, 203–207.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ahmed, T.; Seth, S.; Samanta, A. Mechanistic investigation of the defect activity contributing to the photoluminescence blinking of CsPbBr3 perovskite nanocrystals. ACS Nano 2019, 13, 13537–13544.

    Article  CAS  PubMed  Google Scholar 

  51. Osad’ko, I. S. Two types of the relation between the intensity and the life time of photoluminescence of core/shell semiconductor quantum dots: Important role of coulomb field and tunneling transitions. J. Chem. Phys. 2014, 141, 164312.

    Article  ADS  PubMed  Google Scholar 

  52. Trinh, C. T.; Minh, D. N.; Ahn, K. J.; Kang, Y.; Lee, K. G. Verification of type-A and type-B-HC blinking mechanisms of organic-inorganic formamidinium lead halide perovskite quantum dots by FLID measurements. Sci. Rep. 2020, 10, 2172.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hu, F. R.; Yin, C. Y.; Zhang, H. C.; Sun, C.; Yu, W. W.; Zhang, C. F.; Wang, X. Y.; Zhang, Y.; Xiao, M. Slow Auger recombination of charged excitons in nonblinking perovskite nanocrystals without spectral diffusion. Nano Lett. 2016, 16, 6425–6430.

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Ihara, T.; Kanemitsu, Y. Spectral diffusion of neutral and charged exciton transitions in single CdSe/ZnS nanocrystals due to quantum-confined stark effect. Phys. Rev. B 2014, 90, 195302.

    Article  ADS  Google Scholar 

  55. Han, X.; Zhang, G. F.; Li, B.; Yang, C. G.; Guo, W. L.; Bai, X. Q.; Huang, P.; Chen, R. Y.; Qin, C. B.; Hu, J. Y. et al. Blinking mechanisms and intrinsic quantum-confined stark effect in single methylammonium lead bromide perovskite quantum dots. Simall 2020, 16, 2005435.

    Article  CAS  Google Scholar 

  56. Zhang, G. F.; Peng, Y. G.; Xie, H. Q.; Li, B.; Li, Z. J.; Yang, C. G.; Guo, W. L.; Qin, C. B.; Chen, R. Y.; Gao, Y. et al. Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films. Front. Phys. 2019, 14, 23605.

    Article  ADS  Google Scholar 

  57. Hiroshige, N.; Ihara, T.; Kanemitsu, Y. Simultaneously measured photoluminescence lifetime and quantum yield of two-photon cascade emission on single CdSe/ZnS nanocrystals. Phys. Rev. B 2017, 95, 245307.

    Article  ADS  Google Scholar 

  58. Vaxenburg, R.; Rodina, A.; Lifshitz, E.; Efros, A. L. Biexciton Auger recombination in CdSe/CdS core/shell semiconductor nanocrystals. Nano Lett. 2016, 16, 2503–2511.

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Lin, W. Z.; Niu, Y.; Meng, R. Y.; Huang, L.; Cao, H. J.; Zhang, Z. X.; Qin, H. Y.; Peng, X. G. Shell-thickness dependent optical properties of CdSe/CdS core/shell nanocrystals coated with thiol ligands. Nano Res. 2016, 9, 260–271.

    Article  CAS  Google Scholar 

  60. Yuan, G. C.; Ritchie, C.; Ritter, M.; Murphy, S.; Gómez, D. E.; Mulvaney, P. The degradation and blinking of single CsPbI3 perovskite quantum dots. J. Phys. Chem. C 2018, 122, 13407–13415.

    Article  CAS  Google Scholar 

  61. Li, B.; Huang, H.; Zhang, G. F.; Yang, C. G.; Guo, W. L.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Biju, V. P.; Rogach, A. L. et al. Excitons and biexciton dynamics in single CsPbBr3 perovskite quantum dots. J. Phys. Chem. Lett. 2018, 9, 6934–6940.

    Article  CAS  PubMed  Google Scholar 

  62. Yang, C. G.; Li, Y.; Hou, X. Q.; Zhang, M.; Zhang, G. F.; Li, B.; Guo, W. L.; Han, X.; Bai, X. Q.; Li, J. L. et al. Conversion of photoluminescence blinking types in single colloidal quantum dots. Small, in press, https://doi.org/10.1002/smll.202309134.

  63. Morozov, S.; Pensa, E. L.; Khan, A. H.; Polovitsyn, A.; Cortés, E.; Maier, S. A.; Vezzoli, S.; Moreels, I.; Sapienza, R. Electrical control of single-photon emission in highly charged individual colloidal quantum dots. Sci. Adv. 2020, 6, eabb1821.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. LeBlanc, S. J.; McClanahan, M. R.; Moyer, T.; Jones, M.; Moyer, P. J. Fluorescence modulation in single CdSe quantum dots by moderate applied electric fields. J. Appl. Phys. 2014, 115, 034306.

    Article  ADS  Google Scholar 

  65. Trinh, C. T.; Minh, D. N.; Nguyen, V. L.; Ahn, K. J.; Kang, Y.; Lee, K. G. An experimental study on the blinking suppression mechanism of organic-inorganic formamidinium lead halide perovskite quantum dots on N-type semiconductors. APL Mater. 2020, 8, 031102.

    Article  ADS  CAS  Google Scholar 

  66. Li, B.; Zhang, G. F.; Wang, Z.; Li, Z. J.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Xiao, L. T.; Jia, S. T. Suppressing the fluorescence blinking of single quantum dots encased in N-type semiconductor nanoparticles. Sci. Rep. 2016, 6, 32662.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sayevich, V.; Robinson, Z. L.; Kim, Y.; Kozlov, O. V.; Jung, H.; Nakotte, T.; Park, Y. S.; Klimov, V. I. Highly versatile near-infrared emitters based on an atomically defined HgS interlayer embedded into a CdSe/CdS quantum dot. Nat. Nanotechnol. 2021, 16, 673–679.

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Krishnamurthy, S.; Singh, A.; Hu, Z. J.; Blake, A. V.; Kim, Y.; Singh, A.; Dolgopolova, E. A.; Williams, D. J.; Piryatinski, A.; Malko, A. V. et al. PbS/CdS quantum dot room-temperature singleemitter spectroscopy reaches the telecom O and s bands via an engineered stability. ACS Nano 2021, 15, 575–587.

    Article  CAS  PubMed  Google Scholar 

  69. Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K. et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445–451.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jain, A.; Voznyy, O.; Hoogland, S.; Korkusinski, M.; Hawrylak, P.; Sargent, E. H. Atomistic design of CdSe/CdS core-shell quantum dots with suppressed Auger recombination. Nano Lett. 2016, 16, 6491–6496.

    Article  ADS  PubMed  Google Scholar 

  71. Hou, X. Q.; Li, Y.; Qin, H. Y.; Peng, X. G. Effects of interfacepotential smoothness and wavefunction delocalization on Auger recombination in colloidal CdSe-based core/shell quantum dots. J. Chem. Phys. 2019, 151, 234703.

    Article  ADS  PubMed  Google Scholar 

  72. Guo, W. L.; Tang, J. L.; Zhang, G. F.; Li, B.; Yang, C. G.; Chen, R. Y.; Qin, C. B.; Hu, J. Y.; Zhong, H. Z.; Xiao, L. T. et al. Photoluminescence blinking and biexciton Auger recombination in single colloidal quantum dots with sharp and smooth core/shell interfaces. J. Phys. Chem. Lett. 2021, 12, 405–412.

    Article  CAS  PubMed  Google Scholar 

  73. Hu, Z.; Liu, S. J.; Qin, H. Y.; Zhou, J. H.; Peng, X. G. Oxygen stabilizes photoluminescence of CdSe/CdS core/shell quantum dots via deionization. J. Am. Chem. Soc. 2020, 142, 4254–4264.

    Article  CAS  PubMed  Google Scholar 

  74. Yang, C. G.; Zhang, G. F.; Feng, L. H.; Li, B.; Li, Z. J.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Xiao, L. T.; Jia, S. T. Suppressing the photobleaching and photoluminescence intermittency of single near-infrared CdSeTe/ZnS quantum dots with p-Phenylenediamine. Opt. Express 2018, 26, 11889–11902.

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Thomas, E. M.; Ghimire, S.; Kohara, R.; Anil, A. N.; Yuyama, K. I.; Takano, Y.; Thomas, K. G.; Biju, V. Blinking suppression in highly excited CdSe/ZnS quantum dots by electron transfer under large positive Gibbs (free) energy change. ACS Nano 2018, 12, 9060–9069.

    Article  CAS  PubMed  Google Scholar 

  76. Chouhan, L.; Ito, S.; Thomas, E. M.; Takano, Y.; Ghimire, S.; Miyasaka, H.; Biju, V. Real-time blinking suppression of perovskite quantum dots by halide vacancy filling. ACS Nano 2021, 15, 2831–2838.

    Article  CAS  PubMed  Google Scholar 

  77. Huang, X. N.; Xu, Q. F.; Zhang, C. F.; Wang, X. Y.; Xiao, M. Energy transfer of biexcitons in a single semiconductor nanocrystal. Nano Lett. 2016, 16, 2492–2496.

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Nair, G.; Zhao, J.; Bawendi, M. G. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics. Nano Lett. 2011, 11, 1136–1140.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Paulite, M.; Acharya, K. P.; Nguyen, H. M.; Hollingsworth, J. A.; Htoon, H. Inverting asymmetric confinement potentials in core/thick-shell nanocrystals. J. Phys. Chem. Lett. 2015, 6, 706–711.

    Article  CAS  PubMed  Google Scholar 

  80. Xu, W. W.; Hou, X. Q.; Meng, Y. J.; Meng, R. Y.; Wang, Z. Y.; Qin, H. Y.; Peng, X. G.; Chen, X. W. Deciphering charging status, absolute quantum efficiency, and absorption cross section of multicarrier states in single colloidal quantum dots. Nano Lett. 2017, 17, 7487–7493.

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Li, B.; Zhang, G. F.; Zhang, Y.; Yang, C. G.; Guo, W. L.; Peng, Y. G.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Hu, J. Y. et al. Biexciton dynamics in single colloidal CdSe quantum dots. J. Phys. Chem. Lett. 2020, 11, 10425–10432.

    Article  CAS  PubMed  Google Scholar 

  82. Cihan, A. F.; Martinez, P. L. H.; Kelestemur, Y.; Mutlugun, E.; Demir, H. V. Observation of biexcitons in nanocrystal solids in the presence of photocharging. ACS Nano 2013, 7, 4799–4809.

    Article  CAS  PubMed  Google Scholar 

  83. Vonk, S. J. W.; Heemskerk, B. A. J.; Keitel, R. C.; Hinterding, S. O. M.; Geuchies, J. J.; Houtepen, A. J.; Rabouw, F. T. Biexciton binding energy and line width of single quantum dots at room temperature. Nano Lett. 2021, 21, 5760–5766.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lubin, G.; Tenne, R.; Ulku, A. C.; Antolovic, I. M.; Burri, S.; Karg, S.; Yallapragada, V. J.; Bruschini, C.; Charbon, E.; Oron, D. Heralded spectroscopy reveals exciton-exciton correlations in single colloidal quantum dots. Nano Lett. 2021, 21, 6756–6763.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, Z. J.; Zhang, G. F.; Li, B.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Xiao, L. T.; Jia, S. T. Enhanced biexciton emission from single quantum dots encased in N-type semiconductor nanoparticles. Appl. Phys. Lett. 2017, 111, 153106.

    Article  ADS  Google Scholar 

  86. Krivenkov, V.; Goncharov, S.; Samokhvalov, P.; Sánchez-Iglesias, A.; Grzelczak, M.; Nabiev, I.; Rakovich, Y. Enhancement of biexciton emission due to long-range interaction of single quantum dots and gold nanorods in a thin-film hybrid nanostructure. J. Phys. Chem. Lett. 2019, 10, 481–486.

    Article  CAS  PubMed  Google Scholar 

  87. Masuo, S.; Kanetaka, K.; Sato, R.; Teranishi, T. Direct observation of multiphoton emission enhancement from a single quantum dot using AFM manipulation of a cubic gold nanoparticle. ACS Photonics 2016, 3, 109–116.

    Article  CAS  Google Scholar 

  88. Naiki, H.; Oikawa, H.; Masuo, S. Modification of emission photon statistics from single quantum dots using metal/SiO2 core/shell nanostructures. Photochem. Photobiol. Sci. 2017, 16, 489–498.

    Article  CAS  PubMed  Google Scholar 

  89. Hiroshige, N.; Ihara, T.; Saruyama, M.; Teranishi, T.; Kanemitsu, Y. Coulomb-enhanced radiative recombination of biexcitons in single giant-shell CdSe/CdS core/shell nanocrystals. J. Phys. Chem. Lett. 2017, 8, 1961–1966.

    Article  CAS  PubMed  Google Scholar 

  90. Rabouw, F. T.; Vaxenburg, R.; Bakulin, A. A.; van Dijk-Moes, R. J. A.; Bakker, H. J.; Rodina, A.; Lifshitz, E.; Efros, A. L.; Koenderink, A. F.; Vanmaekelbergh, D. Dynamics of intraband and interband Auger processes in colloidal core-shell quantum dots. ACS Nano 2015, 9, 10366–10376.

    Article  CAS  PubMed  Google Scholar 

  91. Ma, X. D.; Diroll, B. T.; Cho, W.; Fedin, I.; Schaller, R. D.; Talapin, D. V.; Gray, S. K.; Wiederrecht, G. P.; Gosztola, D. J. Size-dependent biexciton quantum yields and carrier dynamics of quasi-two-dimensional core/shell nanoplatelets. ACS Nano 2017, 11, 9119–9127.

    Article  CAS  PubMed  Google Scholar 

  92. Mangum, B. D.; Sampat, S.; Ghosh, Y.; Hollingsworth, J. A.; Htoon, H.; Malko, A. V. Influence of the core size on biexciton quantum yield of giant CdSe/CdS nanocrystals. Nanoscale 2014, 6, 3712–3720.

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Park, Y. S.; Bae, W. K.; Padilha, L. A.; Pietryga, J. M.; Klimov, V. I. Effect of the core/shell interface on Auger recombination evaluated by single-quantum-dot spectroscopy. Nano Lett. 2014, 14, 396–402.

    Article  ADS  CAS  PubMed  Google Scholar 

  94. Mangum, B. D.; Ghosh, Y.; Hollingsworth, J. A.; Htoon, H. Disentangling the effects of clustering and multi-exciton emission in second-order photon correlation experiments. Opt. Express 2013, 21, 7419–7426.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  95. Mishra, N.; Orfield, N. J.; Wang, F.; Hu, Z. J.; Krishnamurthy, S.; Malko, A. V.; Casson, J. L.; Htoon, H.; Sykora, M.; Hollingsworth, J. A. Using shape to turn off blinking for two-colour multiexciton emission in CdSe/CdS tetrapods. Nat. Commun. 2017, 8, 15083.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Eloi, F.; Frederich, H.; Leray, A.; Buil, S.; Quélin, X.; Ji, B.; Giovanelli, E.; Lequeux, N.; Dubertret, B.; Hermier, J. P. Unraveling the time cross correlations of an emitter switching between two states with the same fluorescence intensity. Opt. Express 2015, 23, 29921–29928.

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Feng, S. W.; Cheng, C. Y.; Wei, C. Y.; Yang, J. H.; Chen, Y. R.; Chuang, Y. W.; Fan, Y. H.; Chuu, C. S. Purification of single photons from room-temperature quantum dots. Phys. Rev. Lett. 2017, 119, 143601.

    Article  ADS  PubMed  Google Scholar 

  98. Ta, H.; Keller, J.; Haltmeier, M.; Saka, S. K.; Schmied, J.; Opazo, F.; Tinnefeld, P.; Munk, A.; Hell, S. W. Mapping molecules in scanning far-field fluorescence nanoscopy. Nat. Commun. 2015, 6, 7977.

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Li, B.; Zhang, G. F.; Yang, C. G.; Li, Z. J.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Huang, H.; Xiao, L. T.; Jia, S. T. Fast recognition of single quantum dots from high multi-exciton emission and clustering effects. Opt. Express 2018, 26, 4674–4685.

    Article  ADS  CAS  PubMed  Google Scholar 

  100. Li, B.; Gao, Y. K.; Wu, R. X.; Miao, X. Y.; Zhang, G. F. Charge and energy transfer dynamics in single colloidal quantum dots/monolayer MoS2 heterostructures. Phys. Chem. Chem. Phys. 2023, 25, 8161–8167.

    Article  CAS  PubMed  Google Scholar 

  101. Zhai, X. T.; Zhang, R. X.; Sheng, H. X.; Wang, J.; Zhu, Y. M.; Lu, Z. C.; Li, Z. Y.; Huang, X.; Li, H.; Lu, G. Direct observation of the light-induced exfoliation of molybdenum disulfide sheets in water medium. ACS Nano 2021, 15, 5661–5670.

    Article  CAS  PubMed  Google Scholar 

  102. Chen, Y. Q.; Li, Z. Y.; Huang, X.; Lu, G.; Huang, W. Smgle-molecule mapping of catalytic reactions on heterostructures. Nano Today 2020, 34, 100957.

    Article  CAS  Google Scholar 

  103. Li, Z. Y.; Devasenathipathy, R.; Wang, J. J.; Yu, L. Y. Z.; Liang, Y.; Sheng, H. X.; Zhu, Y. M.; Li, H.; Uji-i, H.; Huang, X. et al. Direct observation of the plasmon-enhanced palladium catalysis with single-molecule fluorescence microscopy. Nano Res. 2023, 16, 8817–8826.

    Article  ADS  CAS  Google Scholar 

  104. Houel, J.; Doan, Q. T.; Cajgfinger, T.; Ledoux, G.; Amans, D.; Aubret, A.; Dominjon, A.; Ferriol, S.; Barbier, R.; Nasilowski, M. et al. Autocorrelation analysis for the unbiased determination of power-law exponents in single-quantum-dot blinking. ACS Nano 2015, 9, 886–893.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang, G. F.; Rocha, S.; Lu, G.; Yuan, H. F.; Uji-i, H.; Floudas, G. A.; Müllen, K.; Xiao, L. T.; Hofkens, J.; Debroye, E. Spatially and temporally resolved heterogeneities in a miscible polymer blend. ACS Omega 2020, 5, 23931–23939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang, G. F.; Li, B.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Xiao, L. T.; Jia, S. T. Single-molecule probes revealed dynamics of confined nano-regions in miscible polymer blends. Acta Phys. Sin. 2019, 68, 148201.

    Article  Google Scholar 

  107. Tachikawa, T.; Karimata, I.; Kobori, Y. Surface charge trapping in organolead halide perovskites explored by single-particle photoluminescence imaging. J. Phys. Chem. Lett. 2015, 6, 3195–3201.

    Article  CAS  Google Scholar 

  108. Tian, W. M.; Zhao, C. Y.; Leng, J.; Cui, R. R.; Jin, S. Y. Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates. J. Am. Chem. Soc. 2015, 137, 12458–12461.

    Article  CAS  PubMed  Google Scholar 

  109. Hensgens, T.; Fujita, T.; Janssen, L.; Li, X.; Van Diepen, C. J.; Reichl, C.; Wegscheider, W.; Das Sarma, S.; Vandersypen, L. M. K. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array. Nature 2017, 548, 70–73.

    Article  ADS  CAS  PubMed  Google Scholar 

  110. Tang, J. S.; Zhou, Z. Q.; Wang, Y. T.; Li, Y. L.; Liu, X.; Hua, Y. L.; Zou, Y.; Wang, S.; He, D. Y.; Chen, G. et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solidstate quantum memory. Nat. Commun. 2015, 6, 8652.

    Article  ADS  CAS  PubMed  Google Scholar 

  111. Proppe, A. H.; Berkinsky, D. B.; Zhu, H.; Šverko, T.; Kaplan, A. E. K.; Horowitz, J. R.; Kim, T.; Chung, H.; Jun, S.; Bawendi, M. G. Highly stable and pure single-photon emission with 250 ps optical coherence times in InP colloidal quantum dots. Nat. Nanotechnol. 2023, 18, 993–999.

    Article  ADS  CAS  PubMed  Google Scholar 

  112. Berkinsky, D. B.; Proppe, A. H.; Utzat, H.; Krajewska, C. J.; Sun, W. W.; Šverko, T.; Yoo, J. J.; Chung, H.; Won, Y. H.; Kim, T. et al. Narrow intrinsic line widths and electron-phonon coupling of InP colloidal quantum dots. ACS Nano 2023, 17, 3598–3609.

    Article  CAS  PubMed  Google Scholar 

  113. Utzat, H.; Sun, W. W.; Kaplan, A. E. K.; Krieg, F.; Ginterseder, M.; Spokoyny, B.; Klein, N. D.; Shulenberger, K. E.; Perkinson, C. F.; Kovalenko, M. V. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 2019, 363, 1068–1072.

    Article  ADS  CAS  PubMed  Google Scholar 

  114. Liu, J. Q.; Zhu, C.; Pols, M.; Zhang, Z.; Hu, F. R.; Wang, L.; Zhang, C. F.; Liu, Z.; Tao, S. X.; Xiao, M. et al. Discrete elemental distributions inside a single mixed-halide perovskite nanocrystal for the self-assembly of multiple quantum-light sources. Nano Lett. 2023, 23, 10089–10096.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Ackowledgements

This work was supported by the National Key Research and Development Program of China (No. 2022YFA1404201), the National Natural Science Foundation of China (Nos. 62305201, 62075120, 62075122, 62127817, 62222509, U22A2091, U23A20380, and 62105193), Program for Changjiang Scholars and Innovative Research Team (No. IRT_17R70), Shanxi Province Science and Technology Major Special Project (No. 202201010101005), Fundamental Research Program of Shanxi Province (Nos. 202103021223254 and 202203021221121), Graduate Innovation Project in Shanxi Province (No. 2023KY460), Shanxi Province Science and Technology Innovation Talent Team (No. 202204051001014), Science and Technology Cooperation Project of Shanxi Province (No. 202104041101021), and Shanxi “1331 Project”, 111 projects (No. D18001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guofeng Zhang or Liantuan Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Zhang, G., Gao, Y. et al. Single quantum dot spectroscopy for exciton dynamics. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6504-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6504-x

Keywords

Navigation