Skip to main content
Log in

Simple chemical synthesis and isotropic negative thermal expansion in MHfF6 (M = Ca, Mn, Fe, and Co)

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The rapid progress of modern technologies has accelerated the prominence of thermal expansion mismatch between materials, and tunable thermal expansion materials will be a powerful safeguard against this challenge. Here, isotropic MHfF6 (M = Ca, Mn, Fe, and Co) compounds with tunable thermal expansion have been produced via a low-cost synthetic method and investigated. By utilizing temperature dependent X-ray diffraction (XRD) and Raman spectroscopy, combined with first principles calculations, it was revealed that the transverse thermal vibrations of the F atoms are dominated by low-frequency phonons with negative Grüneisen parameters and are therefore the origin of the negative thermal expansion (NTE). Very interestingly, with the increase of the M atomic number, the metal⋯F atomic linkages become stiffer, reducing the number of vibrational modes with negative Grüneisen parameters, so that the strong NTE can be gradually adjusted to moderate NTE and to near zero thermal expansion. The present study achieves the tunable thermal expansion in a new compound family and shed light on the internal mechanism from the perspective of lattice vibrational dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y.; Chen, B.; Guan, D. Q.; Xu, M. G.; Ran, R.; Ni, M.; Zhou, W.; O’Hayre, R.; Shao, Z. P. Thermal-expansion offset for high-performance fuel cell cathodes. Nature 2021, 591, 246–251.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Liao, J. S.; Wang, M. H.; Lin, F. L.; Han, Z.; Fu, B.; Tu, D. T.; Chen, X. Y.; Qiu, B.; Wen, H. R. Thermally boosted upconversion and downshifting luminescence in Sc2(MoO4)3: Yb/Er with two-dimensional negative thermal expansion. Nat. Commun. 2022, 13, 2090.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Du, K.; Gao, A.; Gao, L. F.; Sun, S. W.; Lu, X.; Yu, C. Y.; Li, S. Y.; Zhao, H. L.; Bai, Y. Enhancing the structure stability of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode via encapsulating in negative thermal expansion nanocrystalline shell. Nano Energy 2021, 83, 105775.

    Article  CAS  Google Scholar 

  4. Shi, X. W.; Zhang, S.; Zhou, Q.; Li, J.; Zhu, B. L.; Xu, L. J.; Gao, Q. L. Effect of surface modification on thermal expansion of Zr2WP2O12/aromatic polyimides based composites. Tungsten 2023, 5, 179–188.

    Article  Google Scholar 

  5. Liang, E. J.; Sun, Q.; Yuan, H. L.; Wang, J. Q.; Zeng, G. J.; Gao, Q. L. Negative thermal expansion: Mechanisms and materials. Front. Phys. 2021, 16, 53302.

    Article  ADS  Google Scholar 

  6. Mary, T. A.; Evans, J. S. O.; Vogt, T.; Sleight, A. W. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 1996, 272, 90–92.

    Article  ADS  CAS  Google Scholar 

  7. Qiao, Y. Q.; Xiao, N.; Song, Y. Z.; Deng, S. Q.; Huang, R. J.; Li, L. F.; Xing, X. R.; Chen, J. Achieving high performances of ultra-low thermal expansion and high thermal conductivity in 0.5PbTiO3−0.5(Bi0.9La0.1)FeO3@Cu core–shell composite. ACS Appl. Mater. Interfaces 2020, 12, 57228–57234.

    Article  CAS  PubMed  Google Scholar 

  8. Yu, C. Y.; Lin, K.; Jiang, S. H.; Cao, Y. L.; Li, W. J.; Wang, Y. L.; Chen, Y.; An, K.; You, L.; Kato, K. et al. Plastic and low-cost axial zero thermal expansion alloy by a natural dual-phase composite. Nat. Commun. 2021, 12, 4701.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takenaka, K.; Ichigo, M. Thermal expansion adjustable polymer matrix composites with giant negative thermal expansion filler. Compos. Sci. Technol. 2014, 104, 47–51.

    Article  CAS  Google Scholar 

  10. Shi, N. K.; Sanson, A.; Gao, Q. L.; Sun, Q.; Ren, Y.; Huang, Q. Z.; de Souza, D. O.; Xing, X. R.; Chen, J. Strong negative thermal expansion in a low-cost and facile oxide of Cu2P2O7. J. Am. Chem. Soc. 2020, 142, 3088–3093.

    Article  CAS  PubMed  Google Scholar 

  11. Pachoud, E.; Cumby, J.; Lithgow, C. T.; Attfield, J. P. Charge order and negative thermal expansion in V2OPO4. J. Am. Chem. Soc. 2018, 140, 636–641.

    Article  CAS  PubMed  Google Scholar 

  12. Nishikubo, T.; Sakai, Y.; Oka, K.; Watanuki, T.; Machida, A.; Mizumaki, M.; Maebayashi, K.; Imai, T.; Ogata, T.; Yokoyama, K. et al. Enhanced negative thermal expansion induced by simultaneous charge transfer and polar-nonpolar transitions. J. Am. Chem. Soc. 2019, 141, 19397–19403.

    Article  CAS  PubMed  Google Scholar 

  13. Jiang, X. X.; Molokeev, M. S.; Gong, P. F.; Yang, Y.; Wang, W.; Wang, S. H.; Wu, S. F.; Wang, Y. X.; Huang, R. J.; Li, L. F. et al. Near-zero thermal expansion and high ultraviolet transparency in a borate crystal of Zn4B6O13. Adv. Mater. 2016, 28, 7936–7940.

    Article  CAS  PubMed  Google Scholar 

  14. Xie, L. L.; Shi, T. F.; Lin, J. C.; Zhang, X. K.; Zhong, X. K.; Liu, K. K.; Dong, B. K.; Yang, C.; Wang, X. L.; Xiong, T. J. et al. The enhanced negative thermal expansion in less-oxygen-vacancies copper pyrophosphate. J. Mater. Sci. Technol. 2023, 146, 80–85.

    Article  CAS  Google Scholar 

  15. Wang, H.; Yang, M. J.; Chao, M. J.; Guo, J.; Gao, Q. L.; Jiao, Y. J.; Tang, X. B.; Liang, E. J. Negative thermal expansion property of β-Cu2V2O7. Solid State Ion. 2019, 343, 115086.

    Article  CAS  Google Scholar 

  16. Du, Y. G.; Gao, Q. L.; Sanson, A.; Xie, H. L.; Hu, Y. M.; Zeng, G. J.; Guo, J.; Ren, X.; Liang, E. J. Optimized negative thermal expansion property in low-cost Mg2P2O7-based bulk material. Results Phys. 2022, 35, 105415.

    Article  Google Scholar 

  17. Hu, L.; Chen, J.; Sanson, A.; Wu, H.; Rodriguez, C. G.; Olivi, L.; Ren, Y.; Fan, L. L.; Deng, J. X.; Xing, X. R. New insights into the negative thermal expansion: Direct experimental evidence for the “Guitar-String” effect in cubic ScF3. J. Am. Chem. Soc. 2016, 138, 8320–8323.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, J.; Gao, Q. L.; Sanson, A.; Jiang, X. X.; Huang, Q. Z.; Carnera, A.; Rodriguez, C. G.; Olivi, L.; Wang, L.; Hu, L. et al. Tunable thermal expansion in framework materials through redox intercalation. Nat. Commun. 2017, 8, 14441.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Greve, B. K.; Martin, K. L.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.; Wilkinson, A. P. Pronounced negative thermal expansion from a simple structure: Cubic ScF3. J. Am. Chem. Soc. 2010, 132, 15496–15498.

    Article  CAS  PubMed  Google Scholar 

  20. Goodwin, A. L.; Calleja, M.; Conterio, M. J.; Dove, M. T.; Evans, J. S. O.; Keen, D. A.; Peters, L.; Tucker, M. G. Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6]. Science 2008, 319, 794–797.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Gao, Q. L.; Chen, J.; Sun, Q.; Chang, D. H.; Huang, Q. Z.; Wu, H.; Sanson, A.; Milazzo, R.; Zhu, H.; Li, Q. et al. Switching between giant positive and negative thermal expansions of a YFe(CN)6-based prussian blue analogue induced by guest species. Angew. Chem., Int. Ed. 2017, 56, 9023–9028.

    Article  CAS  Google Scholar 

  22. Gao, Q. L.; Jiao, Y. X.; Zheng, Y.; Sanson, A.; Milazzo, R.; Olivi, L.; Sun, Q.; Chen, J.; Liang, E. J. Understanding the role of guest ions in the control of thermal expansion of FeFe(CN)6. Results Phys. 2022, 36, 105410.

    Article  Google Scholar 

  23. Qiao, Y. Q.; Song, Y. Z.; Sanson, A.; Fan, L. L.; Sun, Q.; Hu, S. X.; He, L. H.; Zhang, H. J.; Xing, X. R.; Chen, J. Negative thermal expansion in YbMn2Ge2 induced by the dual effect of magnetism and valence transition. npj Quantum Mater. 2021, 6, 49.

    Article  ADS  CAS  Google Scholar 

  24. Cao, Y. L.; Lin, K.; Khmelevskyi, S.; Avdeev, M.; Taddei, K. M.; Zhang, Q.; Huang, Q. Z.; Li, Q.; Kato, K.; Tang, C. C. et al. Ultrawide temperature range super-Invar behavior of R2(Fe, Co)17 materials (R = rare earth). Phys. Rev. Lett. 2021, 127, 055501.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Zhao, Y. Y.; Hu, F. X.; Bao, L. F.; Wang, J.; Wu, H.; Huang, Q. Z.; Wu, R. R.; Liu, Y.; Shen, F. R.; Kuang, H. et al. Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure. J. Am. Chem. Soc. 2015, 137, 1746–1749.

    Article  CAS  PubMed  Google Scholar 

  26. Deng, S. H.; Sun, Y.; Wu, H.; Huang, Q. Z.; Yan, J.; Shi, K. W.; Malik, M. I.; Lu, H. Q.; Wang, L.; Huang, R. J. et al. Invar-like behavior of antiperovskite Mn3+xNi1−xN compounds. Chem. Mater. 2015, 27, 2495–2501.

    Article  CAS  Google Scholar 

  27. Takenaka, K.; Ichigo, M.; Hamada, T.; Ozawa, A.; Shibayama, T.; Inagaki, T.; Asano, K. Magnetovolume effects in manganese nitrides with antiperovskite structure. Sci. Technol. Adv. Mater. 2014, 15, 015009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Song, X. Y.; Sun, Z. H.; Huang, Q. Z.; Rettenmayr, M.; Liu, X. M.; Seyring, M.; Li, G. N.; Rao, G. H.; Yin, F. X. Adjustable zero thermal expansion in antiperovskite manganese nitride. Adv. Mater. 2011, 23, 4690–4694.

    Article  CAS  PubMed  Google Scholar 

  29. Pang, X. L.; Song, Y. Z.; Shi, N. K.; Xu, M.; Zhou, C.; Chen, J. Design of zero thermal expansion and high thermal conductivity in machinable xLFCS/Cu metal matrix composites. Compos. Part B: Eng. 2022, 238, 109883.

    Article  CAS  Google Scholar 

  30. Zhang, W. Y.; He, L.; Zhou, Y. X.; Tang, D. Y.; Ding, B.; Zhou, C.; Dyson, P. J.; Nazeeruddin, M. K.; Li, X. Multiple roles of negative thermal expansion material for high-performance fully-air processed perovskite solar cells. Chem. Eng. J. 2023, 457, 141216.

    Article  CAS  Google Scholar 

  31. Li, C. W.; Tang, X. L.; Muñoz, J. A.; Keith, J. B.; Tracy, S. J.; Abernathy, D. L.; Fultz, B. Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3. Phys. Rev. Lett. 2011, 107, 195504.

    Article  ADS  PubMed  Google Scholar 

  32. Hu, L.; Chen, J.; Xu, J. L.; Wang, N.; Han, F.; Ren, Y.; Pan, Z.; Rong, Y. C.; Huang, R. J.; Deng, J. X. et al. Atomic linkage flexibility tuned isotropic negative, zero, and positive thermal expansion in MZrF6 (M = Ca, Mn, Fe, Co, Ni, and Zn). J. Am. Chem. Soc. 2016, 138, 14530–14533.

    Article  CAS  PubMed  Google Scholar 

  33. Gupta, M. K.; Singh, B.; Mittal, R.; Chaplot, S. L. Negative thermal expansion behavior in MZrF6 (M = Ca, Mg, Sr): Ab initio lattice dynamical studies. Phys. Rev. B 2018, 98, 014301.

    Article  ADS  CAS  Google Scholar 

  34. Hancock, J. C.; Chapman, K. W.; Halder, G. J.; Morelock, C. R.; Kaplan, B. S.; Gallington, L. C.; Bongiorno, A.; Han, C.; Zhou, S.; Wilkinson, A. P. Large negative thermal expansion and anomalous behavior on compression in cubic ReO3-Type AIIBIVF6: CaZrF6 and CaHfF6. Chem. Mater. 2015, 27, 3912–3918.

    Article  CAS  Google Scholar 

  35. Hester, B. R.; Wilkinson, A. P. Negative thermal expansion, response to pressure and phase transitions in CaTiF6. Inorg. Chem. 2018, 57, 11275–11281.

    Article  CAS  PubMed  Google Scholar 

  36. Xu, J. L.; Hu, L.; Song, Y. Z.; Han, F.; Qiao, Y. Q.; Deng, J. X.; Chen, J.; Xianran Xing, X. R. Zero thermal expansion in cubic MgZrF6. J. Am. Ceram. Soc. 2017, 100, 5385–5388.

    Article  CAS  Google Scholar 

  37. Hester, B. R.; Hancock, J. C.; Lapidus, S. H.; Wilkinson, A. P. Composition, response to pressure, and negative thermal expansion in MIIBIVF6 (M = Ca, Mg; B = Zr, Nb). Chem. Mater. 2017, 29, 823–831.

    Article  CAS  Google Scholar 

  38. Gao, Q. L.; Zhang, S.; Jiao, Y. X.; Qiao, Y. Q.; Sanson, A.; Sun, Q.; Shi, X. W.; Liang, E. J.; Chen, J. A new isotropic negative thermal expansion material of CaSnF6 with facile and low-cost synthesis. Nano Res. 2023, 16, 5964–5972.

    Article  ADS  CAS  Google Scholar 

  39. Rimmer, L. H. N.; Dove, M. T.; Goodwin, A. L.; Palmer, D. C. Acoustic phonons and negative thermal expansion in MOF-5. Phys. Chem. Chem. Phys. 2014, 16, 21144–21152.

    Article  CAS  PubMed  Google Scholar 

  40. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  ADS  CAS  Google Scholar 

  41. Wang, Z. Y.; Wang, F.; Wang, L.; Jia, Y.; Sun, Q. First-principles study of negative thermal expansion in zinc oxide. J. Appl. Phys. 2013, 114, 063508.

    Article  ADS  Google Scholar 

  42. Gupta, M. K.; Singh, B.; Mittal, R.; Rols, S.; Chaplot, S. L. Lattice dynamics and thermal expansion behavior in the metal cyanides MCN (M = Cu, Ag, Au): Neutron inelastic scattering and first-principles calculations. Phys. Rev. B 2016, 93, 134307.

    Article  ADS  Google Scholar 

  43. Karsch, F.; Patkós, A.; Petreczky, P. Screened perturbation theory. Phys. Lett. B 1997, 401, 69–73.

    Article  ADS  CAS  Google Scholar 

  44. Parlinski, K.; Li, Z. Q.; Kawazoe, Y. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 1997, 78, 4063–4066.

    Article  ADS  CAS  Google Scholar 

  45. Zhen, X.; Sanson, A.; Sun, Q.; Liang, E. J.; Gao, Q. L. Role of alkali ions in the near-zero thermal expansion of NaSICON-type AZr2(PO4)3 (A = Na, K, Rb, Cs) and Zr2(PO4)3 compounds. Phys. Rev. B 2023, 108, 144102.

    Article  ADS  CAS  Google Scholar 

  46. Wang, L.; Chen, Y.; Ni, J.; Ye, F.; Wang, C. Anharmonic interaction in negative thermal expansion material CaTiF6. Inorg. Chem. 2022, 61, 17378–17386.

    Article  CAS  PubMed  Google Scholar 

  47. Hester, B. R.; Wilkinson, A. P. Effects of composition on crystal structure, thermal expansion, and response to pressure in ReO3-type MNbF6 (M = Mn and Zn). J. Solid State Chem. 2019, 269, 428–433.

    Article  ADS  CAS  Google Scholar 

  48. Gao, Q. L.; Shi, N. K.; Sanson, A.; Sun, Y.; Milazzo, R.; Olivi, L.; Zhu, H.; Lapidus, S. H.; Zheng, L. R.; Chen, J. et al. Tunable thermal expansion from negative, zero, to positive in cubic prussian blue analogues of GaFe(CN)6. Inorg. Chem. 2018, 57, 14027–14030.

    Article  CAS  PubMed  Google Scholar 

  49. Hu, L.; Chen, J.; Fan, L. L.; Deng, J. X.; Yu, R. B.; Xing, X. R. Rapid molten salt synthesis of isotropic negative thermal expansion ScF3. J. Am. Ceram. Soc. 2014, 97, 1009–1011.

    Article  CAS  Google Scholar 

  50. Ravindran, T. R.; Arora, A. K.; Mary, T. A. High pressure behavior of ZrW2O8: Grüneisen parameter and thermal properties. Phys. Rev. Lett. 2000, 84, 3879–3882.

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Sanson, A.; Giarola, M.; Mariotto, G.; Hu, L.; Chen, J.; Xing, X. R. Lattice dynamics and anharmonicity of CaZrF6 from Raman spectroscopy and ab initio calculations. Mater. Chem. Phys. 2016, 180, 213–218.

    Article  CAS  Google Scholar 

  52. Yang, C.; Qu, B. Y.; Pan, S. S.; Zhang, L.; Zhang, R. R.; Tong, P.; Xiao, R. C.; Lin, J. C.; Guo, X. G.; Zhang, K. et al. Large positive thermal expansion and small band gap in double-ReO3-type compound NaSbF6. Inorg. Chem. 2017, 56, 4990–4995.

    Article  CAS  PubMed  Google Scholar 

  53. Lucazeau, G. Effect of pressure and temperature on Raman spectra of solids: Anharmonicity. J. Raman Spectrosc. 2003, 34, 478–496.

    Article  ADS  CAS  Google Scholar 

  54. Salke, N. P.; Gupta, M. K.; Rao, R.; Mittal, R.; Deng, J. X.; Xing, X. R. Raman and ab initio investigation of negative thermal expansion material TaVO5: Insights into phase stability and anharmonicity. J. Appl. Phys. 2015, 117, 235902.

    Article  ADS  Google Scholar 

  55. Ravindran, T. R.; Arora, A. K.; Mary, T. A. Anharmonicity and negative thermal expansion in zirconium tungstate. Phys. Rev. B 2003, 67, 064301.

    Article  ADS  Google Scholar 

  56. Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 2011, 115, 5461–5466.

    Article  CAS  PubMed  Google Scholar 

  57. Steinberg, S.; Dronskowski, R. The crystal orbital Hamilton population (COHP) method as a tool to visualize and analyze chemical bonding in intermetallic compounds. Crystals 2018, 8, 225.

    Article  Google Scholar 

  58. Gao, Q. L.; Wang, J. Q.; Sanson, A.; Sun, Q.; Liang, E. J.; Xing, X. R.; Chen, J. Discovering large isotropic negative thermal expansion in framework compound AgB(CN)4 via the concept of average atomic volume. J. Am. Chem. Soc. 2020, 142, 6935–6939.

    Article  CAS  PubMed  Google Scholar 

  59. Sanson, A. On the switching between negative and positive thermal expansion in framework materials. Mater. Res. Lett. 2019, 7, 412–417.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22071221 and 21905252) and Natural Science Foundation of Henan Province (Nos. 212300410086, 222301420040 and 222300420325). All calculations were supported by the National Supercomputing Center in Zhengzhou.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qilong Gao or Jun Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Zhang, S., Zhang, P. et al. Simple chemical synthesis and isotropic negative thermal expansion in MHfF6 (M = Ca, Mn, Fe, and Co). Nano Res. 17, 2195–2203 (2024). https://doi.org/10.1007/s12274-024-6445-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6445-4

Keywords

Navigation