Skip to main content
Log in

ROS-responsive nanoparticles targeting inflamed colon for synergistic therapy of inflammatory bowel disease via barrier repair and anti-inflammation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The destruction of the intestinal barrier is likely to cause an increase in intestinal permeability and cause pathological damage. Numerous studies have demonstrated that intestinal barrier function plays an important role in the occurrence and development of inflammatory bowel disease (IBD). Oral administration is the most common route for intestinal diseases. In this study, a synergistic strategy is proposed for IBD management through active barrier repair combined with anti-inflammatory treatment, which can interrupt the pathological process of IBD, resulting in the significantly improved efficacy of existing treatments. Based on the specific pH values and high reactive oxygen species (ROS) levels in inflammatory sites of IBD, an orally administrated ROS-responsive drug delivery system targeting inflamed colon has been designed, and confirmed in vitro and in vivo. The antiinflammatory drug dexamethasone acetate (Dex) and the barrier function regulator LY294002 are delivered by the synthesized nanocarrier to treat IBD synergistically by inhibiting inflammation and actively repairing the intestinal barrier through tight junctions (TJs). The accumulation of nanocarriers in the inflamed colon and synergistic efficacy has been validated in mice with colitis. In brief, a drug delivery system and a therapeutic strategy for IBD are successfully developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein, C. N.; Fried, M.; Krabshuis, J. H.; Cohen, H.; Eliakim, R.; Fedail, S.; Gearry, R.; Goh, K. L.; Hamid, S.; Khan, A. G. et al. World gastroenterology organization practice guidelines for the diagnosis and management of IBD in 2010. Inflamm. Bowel Dis. 2010, 16, 112–124.

    Article  PubMed  Google Scholar 

  2. Thompson, A. I.; Lees, C. W. Genetics of ulcerative colitis. Inflamm. Bowel Dis. 2011, 17, 831–848.

    Article  PubMed  Google Scholar 

  3. Xavier, R. J.; Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007, 448, 427–434.

    Article  CAS  PubMed  Google Scholar 

  4. Mohan, H. M.; Coffey, J. C. Potential roles of the mesentery in Crohn’s disease. Semin. Colon Rectal Surg. 2020, 31, 100743.

    Article  Google Scholar 

  5. Gajendran, M.; Loganathan, P.; Catinella, A. P.; Hashash, J. G. A comprehensive review and update on Crohn’s disease. Dis. Mon. 2018, 64, 20–57.

    Article  PubMed  Google Scholar 

  6. Ek, W. E.; D’Amato, M.; Halfvarson, J. The history of genetics in inflammatory bowel disease. Ann. Gastroenterol. 2014, 27, 294–303.

    PubMed  PubMed Central  Google Scholar 

  7. Khan, I.; Ullah, N.; Zha, L.; Bai, Y. R.; Khan, A.; Zhao, T.; Che, T. J.; Zhang, C. J. Alteration of gut microbiota in inflammatory bowel disease (IBD): Cause or consequence. IBD treatment targeting the gut microbiome. Pathogens 2019, 8, 126.

    CAS  PubMed  Google Scholar 

  8. Thompson-Chagoyán, O. C.; Maldonado, J.; Gil, A. Aetiology of inflammatory bowel disease (IBD): Role of intestinal microbiota and gut-associated lymphoid tissue immune response. Clin. Nutr. 2005, 24, 339–352.

    Article  PubMed  Google Scholar 

  9. de Souza, H. S. P.; Fiocchi, C. Immunopathogenesis of IBD: Current state of the art. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 13–27.

    Article  CAS  PubMed  Google Scholar 

  10. Kmieć, Z.; Cyman, M.; Ślebioda, T. J. Cells of the innate and adaptive immunity and their interactions in inflammatory bowel disease. Adv. Med. Sci. 2017, 62, 1–16.

    Article  PubMed  Google Scholar 

  11. Chelakkot, C.; Ghim, J.; Ryu, S. H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 2018, 50, 1–9.

    Article  CAS  PubMed  Google Scholar 

  12. Salim, S. Y.; Söderholm, J. D. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm. Bowel Dis. 2011, 17, 362–381.

    Article  PubMed  Google Scholar 

  13. Hering, N. A.; Fromm, M.; Schulzke, J. D. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. J. Physiol. 2012, 590, 1035–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Atreya, R.; Neurath, M. F. Molecular pathways controlling barrier function in IBD. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 67–68.

    Article  PubMed  Google Scholar 

  15. Zallot, C.; Peyrin-Biroulet, L. Deep remission in inflammatory bowel disease: Looking beyond symptoms. Curr. Gastroenterol. Rep. 2013, 15, 315.

    Article  PubMed  Google Scholar 

  16. Raghu Subramanian, C.; Triadafilopoulos, G. Care of inflammatory bowel disease patients in remission. Gastroenterol. Rep. 2016, 4, 261–271.

    Google Scholar 

  17. Jeong, D. Y.; Kim, S.; Son, M. J.; Son, C. Y.; Kim, J. Y.; Kronbichler, A.; Lee, K. H.; Shin, J. I. Induction and maintenance treatment of inflammatory bowel disease: A comprehensive review. Autoimmun. Rev. 2019, 18, 439–454.

    Article  PubMed  Google Scholar 

  18. Nielsen, O. H.; Munck, L. K. Drug insight: Aminosalicylates for the treatment of IBD. Nat. Clin. Pract. Gastroenterol. Hepatol. 2007, 4, 160–170.

    Article  CAS  PubMed  Google Scholar 

  19. Hartwig, O.; Boushehri, M. A. S.; Shalaby, K. S.; Loretz, B.; Lamprecht, A.; Lehr, C. M. Drug delivery to the inflamed intestinal mucosa-targeting technologies and human cell culture models for better therapies of IBD. Adv. Drug Deliv. Rev. 2021, 175, 113828.

    Article  CAS  PubMed  Google Scholar 

  20. Yang, C. H.; Merlin, D. Nanoparticle-mediated drug delivery systems for the treatment of IBD: Current perspectives. Int. J. Nanomed. 2019, 14, 8875–8889.

    Article  CAS  Google Scholar 

  21. Zhang, S. F.; Langer, R.; Traverso, G. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. Nano Today 2017, 16, 82–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nedelcu, A.; Mosteanu, O.; Pop, T.; Mocan, T.; Mocan, L. Recent advances in nanoparticle-mediated treatment of inflammatory bowel diseases. Appl. Sci. 2021, 11, 438.

    Article  CAS  Google Scholar 

  23. Soni, J. M.; Sardoiwala, M. N.; Choudhury, S. R.; Sharma, S. S.; Karmakar, S. Melatonin-loaded chitosan nanoparticles endows nitric oxide synthase 2 mediated anti-inflammatory activity in inflammatory bowel disease model. Mater. Sci. Eng. C 2021, 124, 112038.

    Article  CAS  Google Scholar 

  24. Neudecker, V.; Haneklaus, M.; Jensen, O.; Khailova, L.; Masterson, J. C.; Tye, H.; Biette, K.; Jedlicka, P.; Brodsky, K. S.; Gerich, M. E. et al. Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome. J. Exp. Med. 2017, 214, 1737–1752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fukata, T.; Mizushima, T.; Nishimura, J.; Okuzaki, D.; Wu, X.; Hirose, H.; Yokoyama, Y.; Kubota, Y.; Nagata, K.; Tsujimura, N. et al. The supercarbonate apatite-microRNA complex inhibits dextran sodium sulfate-induced colitis. Mol. Ther. Nucl. Acids 2018, 12, 658–671.

    Article  CAS  Google Scholar 

  26. Mehandru, S.; Colombel, J. F. The intestinal barrier, an arbitrator turned provocateur in IBD. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 83–84.

    Article  PubMed  Google Scholar 

  27. Lopetuso, L. R.; Petito, V.; Scaldaferri, F.; Gasbarrini, A. Gut microbiota modulation and mucosal immunity: Focus on rifaximin. Mini Rev. Med. Chem. 2015, 16, 179–185.

    Article  PubMed  Google Scholar 

  28. Lee, S. H. Intestinal permeability regulation by tight junction: Implication on inflammatory bowel diseases. Intest. Res. 2015, 13, 11–18.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lapierre, L. A. The molecular structure of the tight junction. Adv. Drug Deliv. Rev. 2000, 41, 255–264.

    Article  CAS  PubMed  Google Scholar 

  30. Otani, T.; Furuse, M. Tight junction structure and function revisited. Trends Cell Biol. 2020, 30, 805–817.

    Article  CAS  PubMed  Google Scholar 

  31. Citi, S. Intestinal barriers protect against disease. Science 2018, 359, 1097–1098.

    Article  CAS  PubMed  Google Scholar 

  32. Nighot, P.; Ma, T. Endocytosis of intestinal tight junction proteins: In time and space. Inflamm. Bowel Dis. 2021, 27, 283–290.

    Article  PubMed  Google Scholar 

  33. Szabó, I.; Kiss, A.; Schaff, Z.; Sobel, G. Claudins as diagnostic and prognostic markers in gynecological cancer. Histol. Histopathol. 2009, 24, 1607–1615.

    PubMed  Google Scholar 

  34. Koch, S.; Nusrat, A. Dynamic regulation of epithelial cell fate and barrier function by intercellular junctions. Ann. N. Y. Acad. Sci. 2009, 1165, 220–227.

    Article  CAS  PubMed  Google Scholar 

  35. Hering, N. A.; Schulzke, J. D. Therapeutic options to modulate barrier defects in inflammatory bowel disease. Dig. Dis. 2009, 27, 450–454.

    Article  PubMed  Google Scholar 

  36. Capaldo, C. T.; Nusrat, A. Claudin switching: Physiological plasticity of the tight junction. Semin. Cell Dev. Biol. 2015, 42, 22–29.

    Article  CAS  PubMed  Google Scholar 

  37. Bücker, R.; Schumann, M.; Amasheh, S.; Schulzke, J. D. Claudins in intestinal function and disease. Curr. Top. Membr. 2010, 65, 195–227.

    Article  Google Scholar 

  38. Miner-Williams, W. M.; Moughan, P. J. Intestinal barrier dysfunction: Implications for chronic inflammatory conditions of the bowel. Nutr. Res. Rev. 2016, 29, 40–59.

    Article  PubMed  Google Scholar 

  39. Luettig, J.; Rosenthal, R.; Barmeyer, C.; Schulzke, J. D. Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation. Tissue Barriers 2015, 3, e977176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Y. G.; Lu, R.; Xia, Y. L.; Zhou, D.; Petrof, E.; Claud, E. C.; Sun, J. Lack of vitamin D receptor leads to hyperfunction of claudin-2 in intestinal inflammatory responses. Inflamm. Bowel Dis. 2019, 25, 97–110.

    PubMed  Google Scholar 

  41. Hu, C. A.; Hou, Y. Q.; Yi, D.; Qiu, Y. S.; Wu, G. Y.; Kong, X. F.; Yin, Y. L. Autophagy and tight junction proteins in the intestine and intestinal diseases. Anim. Nutr. 2015, 1, 123–127.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li, M.; Oshima, T.; Ito, C.; Yamada, M.; Tomita, T.; Fukui, H.; Miwa, H. Glutamine blocks interleukin-13-induced intestinal epithelial barrier dysfunction. Digestion 2021, 102, 170–179.

    Article  CAS  PubMed  Google Scholar 

  43. Liu, F.; Wang, Y. X.; Yao, W. J.; Xue, Y. Y.; Zhou, J. Q.; Liu, Z. H. Geniposide attenuates neonatal mouse brain injury after hypoxic-ischemia involving the activation of PI3K/Akt signaling pathway. J. Chem. Neuroanat. 2019, 102, 101687.

    Article  CAS  PubMed  Google Scholar 

  44. Li, N.; Neu, J. Glutamine deprivation alters intestinal tight junctions via a PI3-K/Akt mediated pathway in Caco-2 cells. J. Nutr. 2009, 139, 710–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Suzuki, T.; Yoshinaga, N.; Tanabe, S. Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J. Biol. Chem. 2011, 286, 31263–31271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Khare, V.; Dammann, K.; Asboth, M.; Krnjic, A.; Jambrich, M.; Gasche, C. Overexpression of PAK1 promotes cell survival in inflammatory bowel diseases and colitis-associated cancer. Inflamm. Bowel Dis. 2015, 21, 287–296.

    Article  PubMed  Google Scholar 

  47. Zhou, Y.; Tu, C. T.; Zhao, Y.; Liu, H. C.; Zhang, S. C. Placental growth factor enhances angiogenesis in human intestinal microvascular endothelial cells via PI3K/Akt pathway: Potential implications of inflammation bowel disease. Biochem. Biophys. Res. Commun. 2016, 470, 967–974.

    Article  CAS  PubMed  Google Scholar 

  48. Chen, S. P.; Peng, J. H.; Sherchan, P.; Ma, Y. J.; Xiang, S. S.; Yan, F.; Zhao, H.; Jiang, Y.; Wang, N.; Zhang, J. H. et al. TREM2 activation attenuates neuroinflammation and neuronal apoptosis via PI3K/Akt pathway after intracerebral hemorrhage in mice. J. Neuroinflammation 2020, 17, 168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou, T.; Xiong, H.; Wang, S. Q.; Zhang, H. L.; Zheng, W. W.; Gou, Z. R.; Fan, C. Y.; Gao, C. Y. An injectable hydrogel dotted with dexamethasone acetate-encapsulated reactive oxygen species-scavenging micelles for combinatorial therapy of osteoarthritis. Mater. Today Nano 2022, 17, 100164.

    Article  CAS  Google Scholar 

  50. Zhang, Y. M.; Liu, L.; Wang, T. Y.; Mao, C.; Shan, P. F.; Lau, C. S.; Li, Z. Y.; Guo, W. S.; Wang, W. P. Reactive oxygen species-responsive polymeric prodrug nanoparticles for selective and effective treatment of inflammatory diseases. Adv. Healthc. Mater. 2023, 12, 2301394.

    Article  CAS  Google Scholar 

  51. Liu, J. X.; Jia, B. Y.; Li, Z. B.; Li, W. L. Reactive oxygen species-responsive polymer drug delivery systems. Front. Bioeng. Biotechnol. 2023, 11, 1115603.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tan, C.; Fan, H.; Ding, J. H.; Han, C. Q.; Guan, Y.; Zhu, F.; Wu, H.; Liu, Y. J.; Zhang, W.; Hou, X. H. et al. ROS-responsive nanoparticles for oral delivery of luteolin and targeted therapy of ulcerative colitis by regulating pathological microenvironment. Mater. Today Bio 2022, 14, 100246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rinaldi, A.; Caraffi, R.; Grazioli, M. V.; Oddone, N.; Giardino, L.; Tosi, G.; Vandelli, M. A.; Calzà, L.; Ruozi, B.; Duskey, J. T. Applications of the ROS-responsive thioketal linker for the production of smart nanomedicines. Polymers 2022, 14, 687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hensley, K.; Benaksas, E. J.; Bolli, R.; Comp, P.; Grammas, P.; Hamdheydari, L.; Mou, S. Y.; Pye, Q. N.; Stoddard, M. F.; Wallis, G. et al. New perspectives on vitamin E: γ-Tocopherol and carboxyethylhydroxychroman metabolites in biology and medicine. Free Radical Biol. Med. 2004, 36, 1–15.

    Article  CAS  Google Scholar 

  55. Elmowafy, M.; Alhakamy, N. A.; Shalaby, K.; Alshehri, S.; Ali, H. M.; Mohammed, E. F.; Alruwaili, N. K.; Zafar, A. Hybrid polylactic acid/Eudragit L100 nanoparticles: A promising system for enhancement of bioavailability and pharmacodynamic efficacy of luteolin. J. Drug Deliv. Sci. Technol. 2021, 65, 102727.

    Article  CAS  Google Scholar 

  56. Dutta, P.; Mukherjee, K.; Saha, A.; Das, A.; Badwaik, H. R.; Giri, T. K. Colonic delivery of surface charge decorated nanocarrier for IBD therapy. J. Drug Deliv. Sci. Technol. 2022, 76, 103754.

    Article  Google Scholar 

  57. Chassaing, B.; Aitken, J. D.; Malleshappa, M.; Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol., in press, https://doi.org/10.1002/0471142735.im1525s104.

  58. Lee, Y.; Sugihara, K.; GillillandIII, M. G.; Jon, S.; Kamada, N.; Moon, J. J. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat. Mater. 2020, 19, 118–126.

    Article  CAS  PubMed  Google Scholar 

  59. Chen, S. Q.; Wang, C.; Tao, S.; Wang, Y. X.; Hu, F. Q.; Yuan, H. Rational design of redox-responsive and p-gp-inhibitory lipid nanoparticles with high entrapment of paclitaxel for tumor therapy. Adv. Healthc. Mater. 2018, 7, 1800485.

    Article  Google Scholar 

  60. Kamimoto, M.; Rung-Ruangkijkrai, T.; Iwanaga, T. Uptake ability of hepatic sinusoidal endothelial cells and enhancement by lipopolysaccharide. Biomed. Res. 2005, 26, 99–107.

    Article  CAS  PubMed  Google Scholar 

  61. Srinivasan, B.; Kolli, A. R.; Esch, M. B.; Abaci, H. E.; Shuler, M. L.; Hickman, J. J. TEER measurement techniques for in vitro barrier model systems. J. Lab. Autom. 2015, 20, 107–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nazari, H.; Shrestha, J.; Naei, V. Y.; Bazaz, S. R.; Sabbagh, M.; Thiery, J. P.; Warkiani, M. E. Advances in TEER measurements of biological barriers in microphysiological systems. Biosens. Bioelectron. 2023, 234, 115355.

    Article  CAS  PubMed  Google Scholar 

  63. Walkiewicz, D.; Werlin, S. L.; Fish, D.; Scanlon, M.; Hanaway, P.; Kugathasan, S. Fecal calprotectin is useful in predicting disease relapse in pediatric inflammatory bowel disease. Inflamm. Bowel Dis. 2008, 14, 669–673.

    Article  PubMed  Google Scholar 

  64. Liu, F.; Lee, S. A.; Riordan, S. M.; Zhang, L.; Zhu, L. X. Global studies of using fecal biomarkers in predicting relapse in inflammatory bowel disease. Front. Med. 2020, 7, 580803.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81973267) and the Zhejiang Provincial Natural Science Foundation of China (No. LZ22H060001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yuan.

Electronic Supplementary Material

12274_2024_6435_MOESM1_ESM.pdf

ROS-responsive nanoparticles targeting inflamed colon for synergistic therapy of inflammatory bowel disease via barrier repair and anti-inflammation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Jiang, Q., Shen, R. et al. ROS-responsive nanoparticles targeting inflamed colon for synergistic therapy of inflammatory bowel disease via barrier repair and anti-inflammation. Nano Res. 17, 5409–5423 (2024). https://doi.org/10.1007/s12274-024-6435-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6435-6

Keywords

Navigation