Skip to main content
Log in

Multifunctional dual-anion compensation of amphoteric glycine hydrochloride enabled highly stable perovskite solar cells with prolonged carrier lifetime

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Throughout years, the two-step spin-coating process is the most common method to prepare organic lead halide perovskite materials. However, the short reaction time of dropping the solution at the second step means that PbI2 cannot be completely transformed into perovskite phase. To solve this problem, we report the introduction of glycine hydrochloride (GlyHCl) into the second step of the two-step spin-coating process to prepare a FA0.9MA0.1PbI3-x%-GlyHCl perovskite material (namely FAMA-x%-GlyHCl, where FA = formamidinium, MA = methylammonium, and x% stands for the molar ratio of GlyHCl added in FA iodide/MA iodide (FAI/MAI) precursor solution). The Cl ion in GlyHCl assists the formation of α-phase perovskite, and the −COO group coordinates with Pb2+ cation in a bridging way, making up for the anion vacancy in perovskite lattice and resulting in high absorption intensity. The perovskite solar cells (PSCs) based on FAMA-9%-GlyHCl achieve a long carrier lifetime (527.0 ns), a photoelectric conversion efficiency (PCE) of 19.40% and good thermal stability, maintaining 85.8% of the initial PCE after being continuously heated at 60 °C for 500 h. This study helps to solve the problem of incomplete reaction in the two-step spin-coating process and puts forward a new solution for preparing high coverage perovskite films with large grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948.

    Article  CAS  PubMed  Google Scholar 

  2. Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450.

    Article  CAS  PubMed  Google Scholar 

  3. Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T. Y.; Lee, Y. G.; Kim, G.; Shin, H. W.; Seok, S. I.; Lee, J.; Seo, J. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 2018, 3, 682–689.

    Article  CAS  Google Scholar 

  4. McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; Hörantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 357, 151–155.

    Article  Google Scholar 

  5. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

    Article  CAS  PubMed  Google Scholar 

  6. Liang, Z.; Zhang, Y.; Xu, H. F.; Chen, W. J.; Liu, B. Y.; Zhang, J. Y.; Zhang, H.; Wang, Z. H.; Kang, D. H.; Zeng, J. R. et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature, in press, DOI: https://doi.org/10.1038/s41586-023-06784-0.

  7. NREL. Best research-cell efficiency chart [Online]. https://www.nrel.gov/pv/cell-efficiency.html (accessed July 21, 2023).

  8. Bai, S.; Da, P. M.; Li, C.; Wang, Z. P.; Yuan, Z. C.; Fu, F.; Kawecki, M.; Liu, X. J.; Sakai, N.; Wang, J. T. W. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 2019, 571, 245–250.

    Article  CAS  PubMed  Google Scholar 

  9. Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

    Article  CAS  PubMed  Google Scholar 

  10. Yang, W. S.; Park, B. W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379.

    Article  CAS  PubMed  Google Scholar 

  11. Park, B. W.; Kwon, H. W.; Lee, Y.; Lee, D. Y.; Kim, M. G.; Kim, G.; Kim, K. J.; Kim, Y. K.; Im, J.; Shin, T. J. et al. Stabilization of formamidinium lead triiodide a-phase with isopropylammonium chloride for perovskite solar cells. Nat. Energy 2021, 6, 419–428.

    Article  CAS  Google Scholar 

  12. Ye, F. H.; Ma, J. J.; Chen, C.; Wang, H. B.; Xu, Y. H.; Zhang, S. P.; Wang, T.; Tao, C.; Fang, G. J. Roles of MACl in sequentially deposited bromine-free perovskite absorbers for efficient solar cells. Adv. Mater. 2021, 33, 2007126.

    Article  CAS  Google Scholar 

  13. Xiong, Z.; Chen, X.; Zhang, B.; Odunmbaku, G. O.; Ou, Z. P.; Guo, B.; Yang, K.; Kan, Z. P.; Lu, S. R.; Chen, S. S. et al. Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%. Adv. Mater. 2022, 34, 2106118.

    Article  CAS  Google Scholar 

  14. Wang, H. H.; Wang, Z. W.; Yang, Z.; Xu, Y. Z.; Ding, Y.; Tan, L. G.; Yi, C. Y.; Zhang, Z.; Meng, K.; Chen, G. et al. Ligand-modulated excess PbI2 nanosheets for highly efficient and stable perovskite solar cells. Adv. Mater. 2020, 32, 2000865.

    Article  CAS  Google Scholar 

  15. Jiang, Q.; Zhao, Y.; Zhang, X. W.; Yang, X. L.; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466.

    Article  CAS  Google Scholar 

  16. Li, N. X.; Niu, X. X.; Li, L.; Wang, H.; Huang, Z. J.; Zhang, Y.; Chen, Y. H.; Zhang, X.; Zhu, C.; Zai, H. C. et al. Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 2021, 373, 561–567.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, Q.; Zhou, H. P.; Fang, Y. H.; Stieg, A. Z.; Song, T. B.; Wang, H. H.; Xu, X. B.; Liu, Y. S.; Lu, S. R.; You, J. B. et al. The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nat. Commun. 2015, 6, 7269.

    Article  CAS  PubMed  Google Scholar 

  18. Qin, M. C.; Xue, H. B.; Zhang, H. K.; Hu, H. L.; Liu, K.; Li, Y. H.; Qin, Z. T.; Ma, J. J.; Zhu, H. P.; Yan, K. Y. et al. Precise control of perovskite crystallization kinetics via sequential a-site doping. Adv. Mater. 2020, 32, 2004630.

    Article  CAS  Google Scholar 

  19. Min, H.; Kim, M.; Lee, S. U.; Kim, H.; Kim, G.; Choi, K.; Lee, J. H.; Seok, S. I. Efficient, stable solar cells by using inherent bandgap of a-phase formamidinium lead iodide. Science 2019, 366, 749–753.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Y.; Li, Y.; Zhang, L.; Hu, H. L.; Tang, Z. K.; Xu, B. M.; Park, N. G. Propylammonium chloride additive for efficient and stable FAPbI3 perovskite solar cells. Adv. Energy Mater. 2021, 11, 2102538.

    Article  CAS  Google Scholar 

  21. Wang, Q.; Zheng, X. P.; Deng, Y. H.; Zhao, J. J.; Chen, Z. L.; Huang, J. S. Stabilizing the a-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule 2017, 1, 371–382.

    Article  CAS  Google Scholar 

  22. Yang, S. J.; Kim, M.; Ko, H.; Sin, D. H.; Sung, J. H.; Mun, J.; Rho, J.; Jo, M. H.; Cho, K. Visualization and investigation of charge transport in mixed-halide perovskite via lateral-structured photovoltaic devices. Adv. Funct. Mater. 2018, 28, 1804067.

    Article  Google Scholar 

  23. Ibrahim, M.; Nada, A.; Kamal, D. E. Density functional theory and FTIR spectroscopic study of carboxyl group. Indian J. Pure Appl. Phys. 2005, 43, 911–917.

    CAS  Google Scholar 

  24. Jeong, J.; Kim, M.; Seo, J.; Lu, H. Z.; Ahlawat, P.; Mishra, A.; Yang, Y. G.; Hope, M. A.; Eickemeyer, F. T.; Kim, M. et al. Pseudohalide anion engineering for α-FAPbI3 perovskite solar cells. Nature 2021, 592, 381–385.

    Article  CAS  PubMed  Google Scholar 

  25. Quarti, C.; Grancini, G.; Mosconi, E.; Bruno, P.; Ball, J. M.; Lee, M. M.; Snaith, H. J.; Petrozza, A.; De Angelis, F. The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: Interplay of theory and experiment. J. Phys. Chem. Lett. 2014, 5, 279–284.

    Article  CAS  PubMed  Google Scholar 

  26. Kim, M.; Kim, G. H.; Lee, T. K.; Choi, I. W.; Choi, H. W.; Jo, Y.; Yoon, Y. J.; Kim, J. W.; Lee, J.; Huh, D. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 2019, 3, 2179–2192.

    Article  CAS  Google Scholar 

  27. Xie, L.; Chen, J. Z.; Vashishtha, P.; Zhao, X.; Shin, G. S.; Mhaisalkar, S. G.; Park, N. G. Importance of functional groups in cross-linking methoxysilane additives for high-efficiency and stable perovskite solar cells. ACS Energy Lett. 2019, 4, 2192–2200.

    Article  CAS  Google Scholar 

  28. Zhu, X. J.; Du, M. Y.; Feng, J. S.; Wang, H.; Xu, Z.; Wang, L. K.; Zuo, S. N.; Wang, C. Y.; Wang, Z. Y.; Zhang, C. et al. High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport. Angew. Chem., Int. Ed. 2021, 60, 4238–4244.

    Article  CAS  Google Scholar 

  29. Zhu, M. F.; Xia, Y. R.; Qin, L. N.; Zhang, K. Q.; Liang, J. C.; Zhao, C.; Hong, D. C.; Jiang, M. H.; Song, X. M.; Wei, J. et al. Reducing surficial and interfacial defects by thiocyanate ionic liquid additive and ammonium formate passivator for efficient and stable perovskite solar cells. Nano Res. 2023, 16, 6849–6858.

    Article  CAS  Google Scholar 

  30. Zhu, M. F.; Qin, L. N.; Xia, Y. R.; Liang, J. C.; Wang, Y. D.; Hong, D. C.; Tian, Y. X.; Tie, Z. X.; Jin, Z. Antimony doped CsPbI2Br for high-stability all-inorganic perovskite solar cells. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-023-5981-7.

Download references

Acknowledgements

The authors appreciate the financial support from the National Natural Science Foundation of China (No. 22022505), the Fundamental Research Funds for the Central Universities of China (Nos. 0205-14380266, 0205-14380272, and 0205-14380274), the General project of the Joint Fund of Equipment Pre-research and the Ministry of Education (No. 8091B02052407), the Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province (No. BK20220008), the Scientific and Technological Achievements Transformation Special Fund of Jiangsu Province (No. BA2023037), the International Collaboration Research Program of Nanjing City (Nos. 202201007 and 2022SX00000955), and the Gusu Leading Talent Program of Scientific and Technological Innovation and Entrepreneurship of Wujiang District in Suzhou City (No. ZXL2021273).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuoxiu Tie or Zhong Jin.

Electronic Supplementary Material

12274_2024_6428_MOESM1_ESM.pdf

Multifunctional dual-anion compensation of amphoteric glycine hydrochloride enabled highly stable perovskite solar cells with prolonged carrier lifetime

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Zhu, M., Xia, Y. et al. Multifunctional dual-anion compensation of amphoteric glycine hydrochloride enabled highly stable perovskite solar cells with prolonged carrier lifetime. Nano Res. 17, 5131–5137 (2024). https://doi.org/10.1007/s12274-024-6428-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6428-5

Keywords

Navigation