Skip to main content
Log in

How the microenvironment dominated by the distance effect to regulate the FeN4 site ORR activity and selectivity?

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The distance effect of the doped heteroatoms away from the catalytic centers has rarely been reported. In this work, we conducted density functional theory calculations to thoroughly investigate the influence of heteroatom (N, P, B, and S atoms) doping distance on the oxygen reduction reaction (ORR) activity of graphene-based FeN4 sites. We uncovered a Sabatier-like relationship between heteroatom doping distance and ORR activity of FeN4 sites. The nearest doping does not significantly improve and even block the ORR activity of FeN4 sites. Optimal ORR activity is achieved when the heteroatoms are 4–5 Å (N, P, and S atoms) or 6–7 Å (B atoms) away from the Fe atoms. Analysis of electronic structure indicates that distance effect can modulate the local chemical environment of Fe atoms, thereby account for the changes in ORR activity along with the doping distance and doping atoms. This study provides insights into the influence of heteroatom doping on the chemical environment of reaction active centers, and provides the theoretical guidance for controlling the doping distance of heteroatoms to achieve optimal catalytic activity and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, L. J.; Shui, J. L.; Du, L.; Shao, Y. Y.; Liu, J.; Dai, L. M.; Hu, Z. Carbon-based metal-free ORR electrocatalysts for fuel cells: Past, present, and future. Adv. Mater. 2019, 31, 1804799.

    Article  Google Scholar 

  2. Rusnaeni, N.; Purwanto, W. W.; Nasikin, M.; Hendrajaya, L. The effect of NaOH in the formation PtNi/C nanocatalyst for cathode of PEMFC. J. Appl. Sci. 2010, 10, 2899–2904.

    Article  CAS  ADS  Google Scholar 

  3. Tripković, V.; Skúlason, E.; Siahrostami, S.; Nørskov, J. K.; Rossmeisl, J. The oxygen reduction reaction mechanism on Pt (111) from density functional theory calculations. Electrochim. Acta 2010, 55, 7975–7981.

    Article  Google Scholar 

  4. Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe−N−C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.

    Article  CAS  Google Scholar 

  5. Chen, Y. J.; Ji, S. F.; Zhao, S.; Chen, W. X.; Dong, J. C.; Cheong, W. C.; Shen, R. A.; Wen, X. D.; Zheng, L. R.; Rykov, A. I. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 2018, 9, 5422.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  PubMed  Google Scholar 

  7. Cheng, N. C.; Zhang, L.; Doyle-Davis, K.; Sun, X. L. Single-atom catalysts: From design to application. Electrochem. Energy Rev. 2019, 2, 539–573.

    Article  Google Scholar 

  8. Mitchell, S.; Pérez-Ramírez, J. Single atom catalysis: A decade of stunning progress and the promise for a bright future. Nat. Commun. 2020, 11, 4302.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088.

    Article  CAS  PubMed  Google Scholar 

  10. Chen, Z. X.; Liu, J.; Koh, M. J.; Loh, K. P. Single-atom catalysis: From simple reactions to the synthesis of complex molecules. Adv. Mater. 2022, 34, 2103882.

    Article  CAS  Google Scholar 

  11. Kottwitz, M.; Li, Y. Y.; Wang, H. D.; Frenkel, A. I.; Nuzzo, R. G. Single atom catalysts: A review of characterization methods. Chem.—Methods 2021, 1, 278–294.

    Article  CAS  Google Scholar 

  12. Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.

    Article  CAS  Google Scholar 

  13. Hu, H.; Wang, J. L.; Tao, P.; Song, C. Y.; Shang, W.; Deng, T.; Wu, J. B. Stability of single-atom catalysts for electrocatalysis. J. Mater. Chem. A 2022, 10, 5835–5849.

    Article  CAS  Google Scholar 

  14. Fei, H. L.; Dong, J. C.; Chen, D. L.; Hu, T. D.; Duan, X. D.; Shakir, I.; Huang, Y.; Duan, X. F. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207–5241.

    Article  CAS  PubMed  Google Scholar 

  15. Hu, J. W.; Liu, W.; Xin, C. C.; Guo, J. Y.; Cheng, X. S.; Wei, J. Z.; Hao, C.; Zhang, G. F.; Shi, Y. T. Carbon-based single atom catalysts for tailoring the ORR pathway: A concise review. J. Mater. Chem. A 2021, 9, 24803–24829.

    Article  CAS  Google Scholar 

  16. Zhong, L. X.; Jiang, C. Y.; Zheng, M. T.; Peng, X. W.; Liu, T. C.; Xi, S. B.; Chi, X.; Zhang, Q. H.; Gu, L. Q.; Zhang, S. Q. et al. Wood carbon based single-atom catalyst for rechargeable Zn-air batteries. ACS Energy Lett. 2021, 6, 3624–3633.

    Article  CAS  Google Scholar 

  17. Fu, C. H.; Luo, L. X.; Yang, L. J.; Shen, S. Y.; Wei, G. H.; Zhang, J. L. Breaking the scaling relationship of ORR on carbon-based single-atom catalysts through building a local collaborative structure. Catal. Sci. Technol. 2021, 11, 7764–7772.

    Article  CAS  Google Scholar 

  18. Yang, Z. K.; Wang, Y.; Zhu, M. Z.; Li, Z. J.; Chen, W. X.; Wei, W. C.; Yuan, T. W.; Qu, Y. T.; Xu, Q.; Zhao, C. M. et al. Boosting oxygen reduction catalysis with Fe−N4 sites decorated porous carbons toward fuel cells. ACS Catal. 2019, 9, 2158–2163.

    Article  CAS  Google Scholar 

  19. Kattel, S.; Wang, G. F. Reaction pathway for oxygen reduction on FeN4 embedded graphene. J. Phys. Chem. Lett. 2014, 5, 452–456.

    Article  CAS  PubMed  Google Scholar 

  20. Shi, Z. S.; Yang, W. Q.; Gu, Y. T.; Liao, T.; Sun, Z. Q. Metal-nitrogen-doped carbon materials as highly efficient catalysts: Progress and rational design. Adv. Sci. 2020, 7, 2001069.

    Article  CAS  Google Scholar 

  21. Wang, H.; Shao, Y.; Mei, S. L.; Lu, Y.; Zhang, M.; Sun, J. K.; Matyjaszewski, K.; Antonietti, M.; Yuan, J. Y. Polymer-derived heteroatom-doped porous carbon materials. Chem. Rev. 2020, 120, 9363–9419.

    Article  CAS  PubMed  Google Scholar 

  22. Pedersen, A.; Barrio, J.; Li, A.; Jervis, R.; Brett, D. J. L.; Titirici, M. M.; Stephens, I. E. L. Dual-metal atom electrocatalysts: Theory, synthesis, characterization, and applications. Adv. Energy Mater. 2022, 12, 2102715.

    Article  CAS  Google Scholar 

  23. Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  24. Liu, Y. M.; Roy, S.; Sarkar, S.; Xu, J. Q.; Zhao, Y. F.; Zhang, J. J. A review of carbon dots and their composite materials for electrochemical energy technologies. Carbon Energy 2021, 3, 795–826.

    Article  CAS  Google Scholar 

  25. Fajrial, A. K.; Abdulkarim, M. F.; Saputro, A. G.; Agusta, M. K.; Nugraha; Dipojono, H. K. Boron and nitrogen Co-doping configuration on pyrolyzed Fe−N4/C catalyst. Procedia Eng. 2017, 170, 131–135.

    Article  CAS  Google Scholar 

  26. Fajrial, A. K.; Abdulkarim, M. F.; Saputro, A. G.; Agusta, M. K.; Nugraha; Dipojono, H. K. Boron and nitrogen Co-doping configuration on pyrolyzed Fe−N4/C catalyst. Procedia Eng. 2017, 170, 131–135

    Article  CAS  Google Scholar 

  27. Zhou, Y. Z.; Tao, X. F.; Chen, G. B.; Lu, R. H.; Wang, D.; Chen, M. X.; Jin, E. Q.; Yang, J.; Liang, H. W.; Zhao, Y. et al. Multilayer stabilization for fabricating high-loading single-atom catalysts. Nat. Commun. 2020, 11, 5892.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Wang, Y. C.; Lai, Y. J.; Song, L.; Zhou, Z. Y.; Liu, J. G.; Wang, Q.; Yang, X. D.; Chen, C.; Shi, W.; Zheng, Y. P. et al. S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density. Angew. Chem., Int. Ed. 2015, 54, 9907–9910.

    Article  CAS  Google Scholar 

  29. Hu, C. G.; Dai, L. M. Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 2019, 31, 1804672.

    Article  Google Scholar 

  30. Li, Q. K.; Li, X. F.; Zhang, G. Z.; Jiang, J. Cooperative spin transition of monodispersed FeN3 sites within graphene induced by CO adsorption. J. Am. Chem. Soc. 2018, 140, 15149–15152.

    Article  CAS  PubMed  Google Scholar 

  31. Cao, X. R.; Li, X. F.; Hu, W. Tunable electronic and magnetic properties of graphene-embedded transition metal-N4 complexes: Insight from first-principles calculations. Chem.—Asian J. 2018, 13, 3239–3245.

    Article  CAS  PubMed  Google Scholar 

  32. Wu, L.; Cao, X. R.; Hu, W.; Ji, Y. F.; Zhu, Z. Z.; Li, X. F. Improving the oxygen reduction reaction activity of FeN4-graphene via tuning electronic characteristics. ACS Appl. Energy Mater. 2019, 2, 6634–6641.

    Article  CAS  Google Scholar 

  33. Jin, Z. Y.; Li, P. P.; Meng, Y.; Fang, Z. W.; Xiao, D.; Yu, G. H. Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 2021, 4, 615–622.

    Article  CAS  Google Scholar 

  34. Sun, J. C.; Feng, S.; Wang, X. J.; Zhang, G. Z.; Luo, Y.; Jiang, J. Regulation of electronic structure of graphene nanoribbon by tuning long-range dopant-dopant coupling at distance of tens of nanometers. J. Phys. Chem. Lett. 2020, 11, 6907–6913.

    Article  CAS  PubMed  Google Scholar 

  35. Li, P.; Xu, J. W.; Su, Y. Q. Unravelling the 2e ORR activity induced by distance effect on main-group metal InN4 surface based on first principles. Molecules 2022, 27, 7720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, B. Q.; Cheng, C.; Jin, M. M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D. S.; Li, Y. D. A site distance effect induced by reactant molecule matchup in single-atom catalysts for Fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202207268.

    Article  CAS  ADS  Google Scholar 

  37. Han, Y. L.; Li, Q. K.; Ye, K.; Luo, Y.; Jiang, J.; Zhang, G. Z. Impact of active site density on oxygen reduction reactions using monodispersed Fe−N−C single-atom catalysts. ACS Appl. Mater. Interfaces 2020, 12, 15271–15278.

    Article  CAS  PubMed  Google Scholar 

  38. Niu, J. T.; Qi, W. J.; Li, C.; Mao, M.; Zhang, Z. G.; Chen, Y.; Li, W. L.; Ge, S. S. Mechanisms of oxygen reduction reaction on B doped FeN4−G and FeN4−CNT catalysts for proton-exchange membrane fuel cells. Int. J. Energy Res. 2021, 45, 8524–8535.

    Article  CAS  Google Scholar 

  39. Lin, Y. Y.; Liu, K.; Chen, K. J.; Xu, Y.; Li, H. M.; Hu, J. H.; Lu, Y. R.; Chan, T. S.; Qiu, X. Q.; Fu, J. W. et al. Tuning charge distribution of FeN4 via external N for enhanced oxygen reduction reaction. ACS Catal. 2021, 11, 6304–6315.

    Article  CAS  Google Scholar 

  40. Yin, H. B.; Yuan, P. F.; Lu, B. A.; Xia, H. C.; Guo, K.; Yang, G. G.; Qu, G.; Xue, D. P.; Hu, Y. F.; Cheng, J. Q. et al. Phosphorus-driven electron delocalization on edge-type FeN4 active sites for oxygen reduction in acid medium. ACS Catal. 2021, 11, 12754–12762.

    Article  CAS  Google Scholar 

  41. Jia, Y.; Xiong, X. Y.; Wang, D. N.; Duan, X. X.; Sun, K.; Li, Y. J.; Zheng, L. R.; Lin, W. F.; Dong, M. D.; Zhang, G. X. et al. Atomically dispersed Fe−N4 modified with precisely located S for highly efficient oxygen reduction. Nano-Micro Lett. 2020, 12, 116.

    Article  CAS  ADS  Google Scholar 

  42. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  43. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1997, 78, 1396–1396

    Article  CAS  ADS  Google Scholar 

  44. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

    Article  CAS  PubMed  Google Scholar 

  45. Fattebert, J. L.; Gygi, F. First-principles molecular dynamics simulations in a continuum solvent. Int. J. Quantum Chem. 2003, 93, 139–147.

    Article  CAS  Google Scholar 

  46. Petrosyan, S. A.; Rigos, A. A.; Arias, T. A. Joint density-functional theory: Ab initio study of Cr2O3 surface chemistry in solution. J. Phys. Chem. B 2005, 109, 15436–15444.

    Article  CAS  PubMed  Google Scholar 

  47. Andreussi, O.; Dabo, I.; Marzari, N. Revised self-consistent continuum solvation in electronic–structure calculations. J. Chem. Phys. 2012, 136, 064102.

    Article  PubMed  ADS  Google Scholar 

  48. Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

    Article  CAS  Google Scholar 

  49. Dipojono, H. K.; Saputro, A. G.; Fajrial, A. K.; Agusta, M. K.; Akbar, F. T.; Rusydi, F.; Wicaksono, D. H. B. Oxygen reduction reaction mechanism on a phosporus-doped pyrolyzed graphitic Fe/N/C catalyst. New J. Chem. 2019, 43, 11408–11418.

    Article  CAS  Google Scholar 

  50. Greeley, J.; Nørskov, J. K. Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations. Electrochim. Acta 2007, 52, 5829–5836.

    Article  CAS  Google Scholar 

  51. Haynes, W. M. CRC Handbook of Chemistry and Physics; CRC Press: New York, 1996.

    Google Scholar 

  52. Wang, H. H.; Lv, L. B.; Zhang, S. N.; Su, H.; Zhai, G. Y.; Lei, W. W.; Li, X. H.; Chen, J. S. Synergy of Fe-N4 and non-coordinated boron atoms for highly selective oxidation of amine into nitrile. Nano Res. 2020, 3, 2079–2084.

    Article  Google Scholar 

  53. Qin, Y. Y.; Li, P.; Li, Z.; Wu, T. T.; Su, Y. Q. Potential-dependent oxygen reduction on FeN4 under explicit solvation environment. J. Phys. Chem. C 2023, 127, 4934–4941.

    Article  CAS  Google Scholar 

  54. Zhang, N.; Zhou, T. P.; Chen, M. L.; Feng, H.; Yuan, R. L.; Zhong, C. A.; Yan, W. S.; Tian, Y. C.; Wu, X. J.; Chu, W. S. et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 2020, 13, 111–118.

    Article  CAS  Google Scholar 

  55. Zhang, X. R.; Wen, X. Y.; Pan, C.; Xiang, X.; Hao, C.; Meng, Q. H.; Tian, Z. Q.; Shen, P. K.; Jiang, S. P. N species tuning strategy in N,S Co-doped graphene nanosheets for electrocatalytic activity and selectivity of oxygen redox reactions. Chem. Eng. J. 2022, 431, 133216.

    Article  CAS  Google Scholar 

  56. Choi, C. H.; Chung, M. W.; Kwon, H. C.; Park, S. H.; Woo, S. I. B,N- and P,N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media. J. Mater. Chem. A 2013, 1, 3694–3699.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y. Q. S. acknowledges the “Young Talent Support Plan” of Xi’an Jiaotong University. Supercomputing facilities were provided by Hefei Advanced Computing Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianrui Zhang, Ruilin Chen or Yaqiong Su.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Guo, Q., Zhang, J. et al. How the microenvironment dominated by the distance effect to regulate the FeN4 site ORR activity and selectivity?. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6414-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6414-y

Keywords

Navigation