Skip to main content
Log in

In situ reduction strategy towards high conductivity, anti-freezing and super-stretchable rGO based hydrogel for diverse flexible electronics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hydrogels electrolytes with flexibility and high conductivity have been widely used in kinds of flexible electronics. However, hydrogels always suffer from the inevitable freezing of water at subzero temperatures, which results in the sacrificing of their electrical properties. Herein, an anti-freezing, flexible hydrogel based on in situ reduction of graphene oxide (GO) and laponite has been developed as electrolyte for high performance supercapacitor and sensitive sensors. The crosslinked GO and laponite in polyacrylamide (PAM) resulted in an enhanced mechanical property, while the in-situ reduction of GO in the hydrogel enhanced the conductivity and diminishes the aggregated of GO. These features guarantee a reliable electro signal as sensor and a high performance of the supercapacitor. Besides, in the process of preparation of reduced graphene oxide (rGO) hydrogel, the addition of ethylene glycol (EG) and KOH, endows the hydrogel antifreeze properties. This anti-freezing electrolyte can be stretched to a strain of 1600% and maintained a specific capacitance of 37.38 F·g−1 at −20 °C. In addition, the photothermal conversion character of rGO in the hydrogel, endows it’s the potential application in wound healing. The overall merits of the hydrogel will open up a new avenue for sensitive sensor and energy storage device in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, Y. F.; Kraemer, D.; Song, B.; Jiang, Z.; Zhou, J. W.; Loomis, J.; Wang, J. J.; Li, M. D.; Ghasemi, H.; Huang, X. P. et al. Nanostructured polymer films with metal-like thermal conductivity. Nat. Commun. 2019, 10, 1771.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li, H. L.; Lv, T.; Sun, H. H.; Qian, G. J.; Li, N.; Yao, Y.; Chen, T. Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte. Nat. Commun. 2019, 10, 536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jin, X. T.; Sun, G. Q.; Zhang, G. F.; Yang, H. S.; Xiao, Y. K.; Gao, J.; Zhang, Z. P.; Qu, L. T. A cross-linked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance. Nano Res. 2019, 12, 1199–1206.

    Article  CAS  Google Scholar 

  4. Chen, Z.; Li, X. L.; Wang, D. H.; Yang, Q.; Ma, L. T.; Huang, Z. D.; Liang, G. J.; Chen, A.; Guo, Y.; Dong, B. B. et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy Environ. Sci. 2021, 14, 3492–3501.

    Article  CAS  Google Scholar 

  5. Long, Y.; Jiang, B.; Huang, T. C.; Liu, Y. X.; Niu, J. N.; Wang, Z. L.; Hu, W. G. Super-stretchable, anti-freezing, anti-drying organogel ionic conductor for multi-mode flexible electronics. Adv. Funct. Mater. 2023, 33, 2304625.

    Article  CAS  Google Scholar 

  6. Wang, Z. W.; Cong, Y.; Fu, J. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J. Mater. Chem. B 2020, 8, 3437–3459.

    Article  CAS  PubMed  Google Scholar 

  7. Li, L.; Lou, Z.; Chen, D.; Jiang, K.; Han, W.; Shen, G. Z. Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small 2018, 14, 1702829.

    Article  Google Scholar 

  8. Wang, X. F.; Yin, Y. J.; Yi, F.; Dai, K. R.; Niu, S. M.; Han, Y. Z.; Zhang, Y.; You, Z. Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics. Nano Energy 2017, 39, 429–436.

    Article  CAS  Google Scholar 

  9. Wu, S.; Lou, D. Y.; Wang, H. Y.; Jiang, D. Q.; Fang, X.; Meng, J.Q.; Sun, X. Y.; Li, J. One-pot synthesis of anti-freezing carrageenan/polyacrylamide double-network hydrogel electrolyte for low-temperature flexible supercapacitors. Chem. Eng. J. 2022, 435, 135057.

    Article  CAS  Google Scholar 

  10. Feng, E. K.; Li, J. J.; Zheng, G. C.; Yan, Z.; Li, X.; Gao, W.; Ma, X. X.; Yang, Z. M. Long-term anti-freezing active organohydrogel based superior flexible supercapacitor and strain sensor. ACS Sustain. Chem. Eng. 2021, 9, 7267–7276.

    Article  CAS  Google Scholar 

  11. Lan, J.; Li, Y. S.; Yan, B.; Yin, C. X.; Ran, R.; Shi, L. Y. Transparent stretchable dual-network ionogel with temperature tolerance for high-performance flexible strain sensors. ACS Appl. Mater. Interfaces 2020, 12, 37597–37606.

    Article  CAS  PubMed  Google Scholar 

  12. Li, S. N.; Yu, Z. R.; Guo, B. F.; Guo, K. Y.; Li, Y.; Gong, L. X.; Zhao, L.; Bae, J.; Tang, L. C. Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2Tx MXene hydrogels for wide-temperature strain sensing. Nano Energy 2021, 90, 106502.

    Article  CAS  Google Scholar 

  13. Deka, B. K.; Hazarika, A.; Lee, S.; Kim, D. Y.; Park, Y. B.; Park, H. W. Triboelectric-nanogenerator- integrated structural supercapacitor based on highly active P-doped branched Cu-Mn selenide nanowires for efficient energy harvesting and storage. Nano Energy 2020, 73, 104754.

    Article  CAS  Google Scholar 

  14. Chan, C. Y.; Wang, Z. Q.; Jia, H.; Ng, P. F.; Chow, L.; Fei, B. Recent advances of hydrogel electrolytes in flexible energy storage devices. J. Mater. Chem. A 2021, 9, 2043–2069.

    Article  CAS  Google Scholar 

  15. Lu, C.; Chen, X. All-temperature flexible supercapacitors enabled by antifreezing and thermally stable hydrogel electrolyte. Nano Lett. 2020, 20, 1907–1914.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu, T. X.; Ni, Y. M.; Biesold, G. M.; Cheng, Y.; Ge, M. Z.; Li, H. Q.; Huang, J. Y.; Lin, Z. Q.; Lai, Y. K. Recent advances in conductive hydrogels: Classifications, properties, and applications. Chem. Soc. Rev. 2023, 52, 473–509.

    Article  CAS  PubMed  Google Scholar 

  17. Song, K. Z.; Jiang, Y. Q.; Pang, X.; Li, Y. Y.; Liu, J. P. Electrodepositing a 3D porous rGO electrode for efficient hydrogel electrolyte integration towards 1.6 V flexible symmetric supercapacitors. Chem. Commun. 2019, 55, 8282–8285.

    Article  CAS  Google Scholar 

  18. Huang, X. W.; Huang, J. H.; Yang, D.; Wu, P. Y. A multi-scale structural engineering strategy for high-performance MXene hydrogel supercapacitor electrode. Adv. Sci. 2021, 8, 2101664.

    Article  CAS  Google Scholar 

  19. Hua, M. T.; Wu, S. W.; Jin, Y.; Zhao, Y. S.; Yao, B. W.; He, X. M. Tough-hydrogel reinforced low-tortuosity conductive networks for stretchable and high-performance supercapacitors. Adv. Mater. 2021, 33, 2100983.

    Article  CAS  Google Scholar 

  20. Chen, M. F.; Chen, J. Z.; Zhou, W. J.; Han, X.; Yao, Y. G.; Wong, C. P. Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO2 batteries. Adv. Mater. 2021, 33, 2007559.

    Article  CAS  Google Scholar 

  21. Wang, Z.; Liu, Z. R.; Zhao, G. R.; Zhang, Z. C.; Zhao, X. Y.; Wan, X. Y.; Zhang, Y. L.; Wang, Z. L.; Li, L. L. Stretchable unsymmetrical piezoelectric BaTiO3 composite hydrogel for triboelectric nanogenerators and multimodal sensors. ACS Nano 2022, 16, 1661–1670.

    Article  CAS  PubMed  Google Scholar 

  22. Fan, F. R.; Tian, Z. Q.; Lin Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  23. Li, C.; Shi, G. Q. Functional gels based on chemically modified graphenes. Adv. Mater. 2014, 26, 3992–4012.

    Article  CAS  PubMed  Google Scholar 

  24. Song, B.; Li, L. Y.; Lin, Z. Y.; Wu, Z. K.; Moon, K. S.; Wong, C. P. Water-dispersible graphene/polyaniline composites for flexible micro-supercapacitors with high energy densities. Nano Energy 2015, 16, 470–478.

    Article  CAS  Google Scholar 

  25. Wang, C. H.; Ding, Y. J.; Yuan, Y.; Cao, A. Y.; He, X. D.; Peng, Q. Y.; Li, Y. B. Multifunctional, highly flexible, free-standing 3D polypyrrole foam. Small 2016, 12, 4070–4076.

    Article  CAS  PubMed  Google Scholar 

  26. Li, Z.; Hu, K.; Yang, M.; Zou, Y.; Yang, J.; Yu, M.; Wang, H.; Qu, X.; Tan, P.; Wang, C.; Zhou, X.; Li, Z. Elastic Cu@PPy sponge for hybrid device with energy conversion and storage. Nano Energy 2019, 58, 852–861

    Article  CAS  Google Scholar 

  27. Wang, X. Y.; Zhang, Q. Q.; Zhao, L.; Hadi, M. K.; Sambasivam, S.; Zhou, Q.; Ran, F. A renewable hydrogel electrolyte membrane prepared by carboxylated chitosan and polyacrylamide for solid-state supercapacitors with wide working temperature range. J. Power Sources 2023, 560, 232704

    Article  CAS  Google Scholar 

  28. Zou, Y. L.; Chen, C.; Sun, Y. J.; Gan, S. C.; Dong, L. B.; Zhao, J. H.; Rong, J. H. Flexible, all-hydrogel supercapacitor with self-healing ability. Chem. Eng. J. 2021, 418, 128616.

    Article  CAS  Google Scholar 

  29. Zhao, X. Y.; Wang, Z.; Liu, Z. R.; Yao, S. C.; Zhang, J. M.; Zhang, Z. C.; Huang, T.; Zheng, L.; Wang, Z. L.; Li, L. L. Anti-freezing and stretchable triboelectric nanogenerator based on liquid electrode for biomechanical sensing in extreme environment. Nano Energy 2022, 96, 107067.

    Article  CAS  Google Scholar 

  30. Zeng, Y. K.; Zhong, J. P.; Wang, H. B.; Fu, M. L.; Ye, D. Q.; Hu, Y. Synergistic effect of tunable oxygen-vacancy defects and graphene on accelerating the photothermal degradation of methanol over Co3O4/rGO nanocomposites. Chem. Eng. J. 2021, 425, 131658.

    Article  CAS  Google Scholar 

  31. Shen, Q. Q.; Zhang, W. D.; Shao, J. P.; Yin, Y.; Zhang, L.; Cui, Q.; Wang, H. Y. Preparation and direct photothermal property of reduced graphene oxide @copper foam cured MIL-101 for solar adsorption cooling process. Energy Convers. Manage. 2022, 251, 115011.

    Article  CAS  Google Scholar 

  32. Ma, B. J.; Nishina, Y.; Bianco, A. A glutathione responsive nanoplatform made of reduced graphene oxide and MnO2 nanoparticles for photothermal and chemodynamic combined therapy. Carbon 2021, 178, 783–791.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2018YFA0209302) and the National Natural Science Foundation of China (Nos. 21976177 and 22276191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Wang.

Electronic Supplementary Material

12274_2023_6267_MOESM1_ESM.pdf

In situ reduction strategy towards high conductivity, anti-freezing and super-stretchable rGO based hydrogel for diverse flexible electronics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, J., Wang, M. et al. In situ reduction strategy towards high conductivity, anti-freezing and super-stretchable rGO based hydrogel for diverse flexible electronics. Nano Res. 17, 4016–4022 (2024). https://doi.org/10.1007/s12274-023-6267-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6267-9

Keywords

Navigation