Skip to main content
Log in

Ultrahigh-power electrochemical double-layer capacitors based on structurally integrated 3D carbon tube arrays

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The rational design of electrodes is the key to achieving ultrahigh-power performance in electrochemical energy storage devices. Recently, we have constructed well-organized and integrated three-dimensional (3D) carbon tube (CT) grids (3D-CTGs) using a 3D porous anodic aluminum oxide template-assisted method as electrodes of electrical double-layer capacitors (EDLCs), showing excellent frequency response performance. The unique design warrants fast ion migration channels, excellent electronic conductivity, and good structural stability. This study achieved one of the highest carbon-based ultrahigh-power EDLCs with the 3D-CTG electrodes, resulting in ultrahigh power of 437 and 1708 W·cm−3 with aqueous and organic electrolytes, respectively. Capacitors constructed with these electrodes would have important application prospects in the ultrahigh-power output. The rational design and fabrication of the 3D-CTGs electrodes have demonstrated their capability to build capacitors with ultrahigh-power performance and open up new possibilities for applications requiring high-power output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeng, J. J.; Xu, C. Y.; Gao, T.; Jiang, X. F.; Wang, X. B. Porous monoliths of 3D graphene for electric double-layer supercapacitors. Carbon Energy 2021, 3, 193–224.

    CAS  Google Scholar 

  2. Wang, Y. Z.; Shan, X. Y.; Ma, L. P.; Wang, J. W.; Wang, D. W.; Peng, Z. Q.; Cheng, H. M.; Li, F. A desolvated solid–solid interface for a high-capacitance electric double layer. Adv. Energy Mater. 2019, 9, 1803715.

    Google Scholar 

  3. Cheng, Y. Y.; Liu, Y. X.; Chu, C.; Liu, Y. L.; Li, Y. X.; Wu, R. Q.; Wu, J. C.; Zhuang, C. Q.; Kang, Z. H.; Li, H. T. Carbon armour with embedded carbon dots for building better supercapacitor electrodes. Nano Res. 2023, 16, 6815–6824.

    CAS  Google Scholar 

  4. Miller, J. R.; Outlaw, R. A.; Holloway, B. C. Graphene electric double layer capacitor with ultra-high-power performance. Electrochim. Acta 2011, 56, 10443–10449.

    CAS  Google Scholar 

  5. Ye, J. L.; Wu, Y. C.; Xu, K.; Ni, K.; Shu, N.; Taberna, P. L.; Zhu, Y. W.; Simon, P. Charge storage mechanisms of single-layer graphene in ionic liquid. J. Am. Chem. Soc. 2019, 141, 16559–16563.

    CAS  Google Scholar 

  6. Bui, T. A. N.; Nguyen, T. G.; Darmanto, W.; Doong, R. A. 3-Dimensional ordered reduced graphene oxide embedded with N-doped graphene quantum dots for high performance supercapacitors. Electrochim. Acta 2020, 361, 137018

    CAS  Google Scholar 

  7. Liu, H. Y.; Xu, T.; Cai, C. Y.; Liu, K.; Liu, W.; Zhang, M.; Du, H. S.; Si, C. L.; Zhang, K. Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 2022, 32, 2113082.

    CAS  Google Scholar 

  8. Shao, Y. L.; El-Kady, M. F.; Lin, C. W.; Zhu, G. Z.; Marsh, K. L.; Hwang, J. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z.; Kaner, R. B. 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv. Mater. 2016, 28, 6719–6726

    CAS  Google Scholar 

  9. Zhang, C. G.; Du, H. Z.; Ma, K.; Yuan, Z. H. Ultrahigh-rate supercapacitor based on carbon nano-onion/graphene hybrid structure toward compact alternating current filter. Adv. Energy Mater. 2020, 10, 2002132.

    CAS  Google Scholar 

  10. Wang, Y.; Zhao, Y.; Han, Y. Y.; Li, X. Y.; Dai, C. L.; Zhang, X. Q.; Jin, X. T.; Shao, C. X.; Lu, B.; Wang, C. Z. et al. Fixture-free omnidirectional prestretching fabrication and integration of crumpled in-plane micro-supercapacitors. Sci. Adv. 2022, 8, eabn8338.

    CAS  Google Scholar 

  11. Chang, Q. H.; Li, L. M.; Qiao, H. J.; Sai, L.; Zhang, Y. W.; Shi, W. Z.; Huang, L. Enhanced electrolyte ion penetration in microdome-like graphene with high mass loading for high-performance flexible supercapacitors. ACS Appl. Energy Mater. 2019, 2, 6790–6799.

    CAS  Google Scholar 

  12. Zhao, Y. Y.; Dong, C. X.; Sheng, L. Z.; Xiao, Z. P.; Jiang, L. L.; Li, X. Y.; Jiang, M. H.; Shi, J. Y. Heteroatom- doped pillared porous carbon architectures with ultrafast electron and ion transport capabilities under high mass loadings for high-rate supercapacitors. ACS Sustain. Chem. Eng. 2020, 8, 8664–8674.

    CAS  Google Scholar 

  13. Lin, D.; Tang, Z. H.; Pan, Q. J.; Zhang, S. P.; Huo, D. X.; Yan, S. S.; Han, F. M. Dense reduced graphene oxide films obtained by pressing create stable and compact capacitive energy storage. ChemElectroChem 2020, 7, 1987–1991.

    CAS  Google Scholar 

  14. Miller, J. R.; Outlaw, R. A.; Holloway, B. C. Graphene double-layer capacitor with ac line-filtering performance. Science 2010, 329, 1637–1639.

    CAS  Google Scholar 

  15. Zhao, J. X.; Zhang, Y.; Yan, J. X.; Zhao, X. X.; Xie, J. X.; Luo, X.; Peng, J. H.; Wang, J. J.; Meng, L. C.; Zeng, Z. M. et al. Fiber-shaped electrochemical capacitors based on plasma-engraved graphene fibers with oxygen vacancies for alternating current line filtering performance. ACS Appl. Energy Mater. 2019, 2, 993–999.

    CAS  Google Scholar 

  16. Xue, J. L.; Gao, Z. S.; Xiao, L. Y.; Zuo, T. T.; Gao, J.; Li, D. W.; Qu, L. T. An ultrafast supercapacitor based on 3D ordered porous graphene film with AC line filtering performance. ACS Appl. Energy Mater. 2020, 3, 5182–5189.

    CAS  Google Scholar 

  17. Islam, N.; Hoque, M. N. F.; Li, W. Y.; Wang, S.; Warzywoda, J.; Fan, Z. Y. Vertically edge-oriented graphene on plasma pyrolyzed cellulose fibers and demonstration of kilohertz high-frequency filtering electrical double layer capacitors. Carbon 2019, 141, 523–530.

    CAS  Google Scholar 

  18. Sheng, K. X.; Sun, Y. Q.; Li, C.; Yuan, W. J.; Shi, G. Q. Ultrahighrate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Sci. Rep. 2012, 2, 247.

    Google Scholar 

  19. Zhao, D. D.; Chang, W.; Lu, C. B.; Yang, C. Q.; Jiang, K. Y.; Chang, X.; Lin, H. L.; Zhang, F.; Han, S.; Hou, Z. S. et al. Charge transfer salt and graphene heterostructure-based micro-supercapacitors with alternating current line-filtering performance. Small 2019, 15, 1901494.

    CAS  Google Scholar 

  20. Zhao, D. D.; Jiang, K. Y.; Li, J. T.; Zhu, X.; Ke, C. C.; Han, S.; Kymakis, E.; Zhuang, X. D. Supercapacitors with alternating current line-filtering performance. BMC Mater. 2020, 2, 3.

    Google Scholar 

  21. Xiong, Q.; Liu, B.; Liu, Y. J.; Wang, P.; Cheng, H.; Li, H. M.; Lu, Z. G.; Yang, M. In-situ self-templating synthesis of 3D hierarchical porous carbons from oxygen-bridged porous organic polymers for high-performance supercapacitors. Nano Res. 2022, 15, 7759–7768

    CAS  Google Scholar 

  22. Ye, J. L.; Tan, H. B.; Wu, S. L.; Ni, K.; Pan, F.; Liu, J.; Tao, Z. C.; Qu, Y.; Ji, H. X.; Simon, P. et al. Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output. Adv. Mater. 2018, 30, 1801384.

    Google Scholar 

  23. Li, H.; Tao, Y.; Zheng, X. Y.; Luo, J. Y.; Kang, F. Y.; Cheng, H. M.; Yang, Q. H. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ. Sci. 2016, 9, 3135–3142.

    CAS  Google Scholar 

  24. Itagaki, M.; Hatada, Y.; Shitanda, I.; Watanabe, K. Complex impedance spectra of porous electrode with fractal structure. Electrochim. Acta 2010, 55, 6255–6262.

    CAS  Google Scholar 

  25. Chen, J. Z.; Xu, J. L.; Zhou, S.; Zhao, N.; Wong, C. P. Nitrogen-doped hierarchically porous carbon foam: A free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 2016, 25, 193–202.

    CAS  Google Scholar 

  26. Li, Z.; Wei, J. J.; Ren, J.; Wu, X. M.; Wang, L.; Pan, D. Y.; Wu, M. H. Hierarchical construction of high-performance all-carbon flexible fiber supercapacitors with graphene hydrogel and nitrogen-doped graphene quantum dots. Carbon 2019, 154, 410–419.

    CAS  Google Scholar 

  27. Mendoza-Sánchez, B.; Gogotsi, Y. Synthesis of two-dimensional materials for capacitive energy storage. Adv. Mater. 2016, 28, 6104–6135.

    Google Scholar 

  28. Zhang, X.; Luo, J. S.; Tang, P. Y.; Ye, X. L.; Peng, X. X.; Tang, H. L.; Sun, S. G.; Fransaer, J. A universal strategy for metal oxide anchored and binder-free carbon matrix electrode: A supercapacitor case with superior rate performance and high mass loading. Nano Energy 2017, 31, 311–321.

    CAS  Google Scholar 

  29. Mao, N.; Wang, H. L.; Sui, Y.; Cui, Y. P.; Pokrzywinski, J.; Shi, J.; Liu, W.; Chen, S. G.; Wang, X.; Mitlin, D. Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading. Nano Res. 2017, 10, 1767–1783.

    CAS  Google Scholar 

  30. Pan, W. S.; Liang, C. W.; Sui, Y.; Wang, J.; Liu, P.; Zou, P. C.; Guo, Z. B.; Wang, F. C.; Ren, X.; Yang, C. A highly compressible, elastic, and air-dryable metallic aerogels via magnetic field-assisted synthesis. Adv. Funct. Mater. 2022, 32, 2204166.

    CAS  Google Scholar 

  31. Yang, Y. J.; He, L.; Tang, C. J.; Hu, P.; Hong, X. F.; Yan, M. Y.; Dong, Y. X.; Tian, X. C.; Wei, Q. L.; Mai, L. Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Res. 2016, 9, 2510–2519.

    CAS  Google Scholar 

  32. Zheng, X. Y.; Luo, J. Y.; Lv, W.; Wang, D. W.; Yang, Q. H. Two-dimensional porous carbon: Synthesis and ion-transport properties. Adv. Mater. 2015, 27, 5388–5395.

    CAS  Google Scholar 

  33. Yoon, Y.; Lee, K.; Kwon, S.; Seo, S.; Yoo, H.; Kim, S.; Shin, Y.; Park, Y.; Kim, D.; Choi, J. Y. et al. Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano 2014, 8, 4580–4590.

    CAS  Google Scholar 

  34. Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.

    CAS  Google Scholar 

  35. Zhang, W. L.; Lei, Y. J.; Jiang, Q.; Ming, F. W.; Costa, P. M. F. J.; Alshareef, H. N. 3D laser scribed graphene derived from carbon nanospheres: An ultrahigh-power electrode for supercapacitors. Small Methods 2019, 3, 1900005

    Google Scholar 

  36. Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Ultrahigh-power micrometresized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651–654.

    CAS  Google Scholar 

  37. Niu, Z. Q.; Luan, P. S.; Shao, Q.; Dong, H. B.; Li, J. Z.; Chen, J.; Zhao, D.; Cai, L.; Zhou, W. Y.; Chen, X. D. et al. A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy Environ. Sci. 2012, 5, 8726–8733.

    CAS  Google Scholar 

  38. Huang, P.; Lethien, C.; Pinaud, S.; Brousse, K.; Laloo, R.; Turq, V.; Respaud, M.; Demortière, A.; Daffos, B.; Taberna, P. L. et al. On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 2016, 351, 691–695.

    CAS  Google Scholar 

  39. Miller, J. R.; Outlaw, R. A. Vertically- oriented graphene electric double layer capacitor designs. J. Electrochem. Soc. 2015, 162, A5077–A5082.

    CAS  Google Scholar 

  40. Maruyama, T.; Okada, T.; Sharma, K. P.; Suzuki, T.; Saida, T.; Naritsuka, S.; Iizumi, Y.; Okazaki, T.; Iijima, S. Vertically aligned growth of small-diameter single-walled carbon nanotubes by alcohol catalytic chemical vapor deposition with Ir catalyst. Appl. Surf. Sci. 2020, 509, 145340.

    CAS  Google Scholar 

  41. Han, F. M.; Qian, O.; Meng, G. W.; Lin, D.; Chen, G.; Zhang, S. P.; Pan, Q. J.; Zhang, X.; Zhu, X. G.; Wei, B. Q. Structurally integrated 3D carbon tube grid-based high-performance filter capacitor. Science 2022, 377, 1004–1007.

    CAS  Google Scholar 

  42. Tian, M.; Wang, W.; Liu, Y.; Jungjohann, K. L.; Thomas Harris, C.; Lee, Y. C.; Yang, R. G. A three-dimensional carbon nano-network for high performance lithium ion batteries. Nano Energy 2015, 11, 500–509.

    CAS  Google Scholar 

  43. Vanpaemel, J.; Abd-Elnaiem, A. M.; De Gendt, S.; Vereecken, P. M. The formation mechanism of 3D porous anodized aluminum oxide templates from an aluminum film with copper impurities. J. Phys. Chem. C 2015, 119, 2105–2112.

    CAS  Google Scholar 

  44. Kure-Chu, S. Z.; Osaka, K.; Yashiro, H.; Segawa, H.; Wada, K.; Inoue, S. Controllable fabrication of networked three-dimensional nanoporous anodic alumina films on low-purity Al materials. J. Electrochem. Soc. 2015, 162, C24–C34.

    CAS  Google Scholar 

  45. Dong, Z. L.; Zhou, C.; Cheng, H. H.; Zhao, Y.; Hu, C. G.; Chen, N.; Zhang, Z. P.; Luo, H. X.; Qu, L. T. Carbon nanotube-nanopipe composite vertical arrays for enhanced electrochemical capacitance. Carbon 2013, 64, 507–515.

    CAS  Google Scholar 

  46. Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew. Chem., Int. Ed. 2008, 47, 3392–3395.

    CAS  Google Scholar 

  47. Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763.

    CAS  Google Scholar 

  48. Beidaghi, M.; Wang, C. L. Micro- supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 2012, 22, 4501–4510.

    CAS  Google Scholar 

  49. Zheng, S. H.; Li, Z. L.; Wu, Z. S.; Dong, Y. F.; Zhou, F.; Wang, S.; Fu, Q.; Sun, C. L.; Guo, L. W.; Bao, X. H. High packing density unidirectional arrays of vertically aligned graphene with enhanced areal capacitance for high-power micro-supercapacitors. ACS Nano 2017, 11, 4009–4016.

    CAS  Google Scholar 

  50. Ouyang, J.; Wang, X. M.; Wang, L. C.; Xiong, W. N.; Li, M. Y.; Hua, Z. H.; Zhao, L. L.; Zhou, C.; Liu, X. B.; Chen, H. et al. Construction of a porous carbon skeleton in wood tracheids to enhance charge storage for high-performance supercapacitors. Carbon 2022, 196, 532–539.

    CAS  Google Scholar 

  51. El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

    CAS  Google Scholar 

  52. Chen, H.; Liu, T.; Mou, J. R.; Zhang, W. J.; Jiang, Z. J.; Liu, J.; Huang, J. L.; Liu, M. L. Free- standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors. Nano Energy 2019, 63, 103836.

    CAS  Google Scholar 

  53. Chen, C.; Zhao, M. K.; Cai, Y. Y.; Zhao, G. Z.; Xie, Y.; Zhang, L.; Zhu, G.; Pan, L. K. Scalable synthesis of strutted nitrogen doped hierarchical porous carbon nanosheets for supercapacitors with both high gravimetric and volumetric performances. Carbon 2021, 179, 458–468.

    CAS  Google Scholar 

  54. Chen, B. L.; Johnson, Z. T.; Sanborn, D.; Hjort, R. G.; Garland, N. T.; Soares, R. R. A.; Van Belle, B.; Jared, N.; Li, J. Z.; Jing, D. P. et al. Tuning the structure, conductivity, and wettability of laser-induced graphene for multiplexed open microfluidic environmental biosensing and energy storage devices. ACS Nano 2022, 16, 15–28.

    CAS  Google Scholar 

  55. Li, P.; Li, H.; Han, D. L.; Shang, T. X.; Deng, Y. Q.; Tao, Y.; Lv, W.; Yang, Q. H. Packing activated carbons into dense graphene network by capillarity for high volumetric performance supercapacitors. Adv. Sci. 2019, 6, 1802355.

    Google Scholar 

  56. Sheng, L. Z.; Chang, J.; Jiang, L. L.; Jiang, Z. M.; Liu, Z.; Wei, T.; Fan, Z. J. Multilayer- folded graphene ribbon film with ultrahigh areal capacitance and high rate performance for compressible supercapacitors. Adv. Funct. Mater. 2018, 68, 1800597.

    Google Scholar 

  57. Yoo, J.; Byun, S.; Lee, C. W.; Yoo, C. Y.; Yu, J. Precisely geometry controlled microsupercapacitors for ultrahigh areal capacitance, volumetric capacitance, and energy density. Chem. Mater. 2018, 30, 3979–3990.

    CAS  Google Scholar 

  58. Li, Q. Q.; Jiang, Y. T.; Jiang, Z. M.; Zhu, J. Y.; Gan, X. M.; Qin, F. W.; Tang, T. T.; Luo, W. X.; Guo, N. N.; Liu, Z. et al. Ultrafast pore-tailoring of dense microporous carbon for high volumetric performance supercapacitors in organic electrolyte. Carbon 2022, 191, 19–27.

    CAS  Google Scholar 

  59. Li, X. M.; Zheng, Q. W.; Li, C. M.; Liu, G. Q.; Yang, Q. Z.; Wang, Y. C.; Sun, P. C.; Tian, H. M.; Wang, C. H.; Chen, X. L. et al. Bubble up induced graphene microspheres for engineering capacitive energy storage. Adv. Energy Mater. 2023, 13, 2203761.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 91963202, 52072372, and 52232007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guowen Meng or Bingqing Wei.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, F., Meng, G., Lin, D. et al. Ultrahigh-power electrochemical double-layer capacitors based on structurally integrated 3D carbon tube arrays. Nano Res. 16, 12849–12854 (2023). https://doi.org/10.1007/s12274-023-6263-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6263-0

Keywords

Navigation