Skip to main content
Log in

Carbon nanotubes as outstanding targets for laser-driven particle acceleration

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Under the irradiation of ultraintense laser pulses, targets made of gas, solid, or artificial materials can generate high-energy electrons, ions, and X-rays comparable to conventional accelerators or national light source facilities. Designing and creating high-performance targets are the core problems for laser acceleration. Nanotechnology and nanomaterials can help to build ideal targets that do not exist in nature. This paper reviews the advances in exploiting carbon nanotubes as outstanding targets for laser-driven particle acceleration in memory of Prof. Sishen Xie, the inventor of the fabrication method. We hope that the successful implementation of such targets in enhanced ion acceleration, high-efficiency electron acceleration, and brilliant X-ray generation could attract more interdiscipline interests and promote the development of this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Snavely, R. A.; Key, M. H.; Hatchett, S. P.; Cowan, T. E.; Roth, M.; Phillips, T. W.; Stoyer, M. A.; Henry, E. A.; Sangster, T. C.; Singh, M. S. et al. Intense high-energy proton beams from Petawatt-laser irradiation of solids. Phys. Rev. Lett. 2000 85, 2945–2948.

    CAS  Google Scholar 

  2. Mangles, S. P. D.; Murphy, C. D.; Najmudin, Z.; Thomas, A. G. R.; Collier, J. L.; Dangor, A. E.; Divall, E. J.; Foster, P. S.; Gallacher, J. G.; Hooker, C. J. et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 2004 431, 535–538.

    CAS  Google Scholar 

  3. Geddes, C. G. R.; Toth, C.; van Tilborg, J.; Esarey, E.; Schroeder, C. B.; Bruhwiler, D.; Nieter, C.; Cary, J.; Leemans, W. P. High-quality electron beams from a laser wakefield accelerator using plasmachannel guiding. Nature 2004 431, 538–541.

    CAS  Google Scholar 

  4. Faure, J.; Glinec, Y.; Pukhov, A.; Kiselev, S.; Gordienko, S.; Lefebvre, E.; Rousseau, J. P.; Burgy, F.; Malka, V. A laser-plasma accelerator producing monoenergetic electron beams. Nature 2004 431, 541–544.

    CAS  Google Scholar 

  5. Mourou, G. A.; Tajima, T.; Bulanov, S. V. Optics in the relativistic regime. Rev. Mod. Phys. 2006 78, 309–371.

    CAS  Google Scholar 

  6. Gonsalves, A. J.; Nakamura, K.; Daniels, J.; Benedetti, C.; Pieronek, C.; de Raadt, T. C. H.; Steinke, S.; Bin, J. H.; Bulanov, S. S.; van Tilborg, J. et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 2019 122, 084801.

    CAS  Google Scholar 

  7. Leemans, W. P.; Gonsalves, A. J.; Mao, H. S.; Nakamura, K.; Benedetti, C.; Schroeder, C. B.; Tóth, C.; Daniels, J.; Mittelberger, D. E.; Bulanov, S. S. et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 2014 113, 245002.

    CAS  Google Scholar 

  8. Higginson, A.; Gray, R. J.; King, M.; Dance, R. J.; Williamson, S. D. R.; Butler, N. M. H.; Wilson, R.; Capdessus, R.; Armstrong, C.; Green, J. S. et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nat. Commun. 2018 9, 724.

    CAS  Google Scholar 

  9. Ma, W. J.; Liu, Z. P.; Wang, P. J.; Zhao, J. R.; Yan, X. Q. Experimental progress of laser-driven high-energy proton acceleration and new acceleration schemes. Acta Phys. Sin. 2021 70, 084102.

    Google Scholar 

  10. Ledingham, K. W. D.; Bolton, P. R.; Shikazono, N.; Ma, C. M. C. Towards laser driven hadron cancer radiotherapy: A review of progress. Appl. Sci. 2014 4, 402–443.

    Google Scholar 

  11. Lu, W.; Tzoufras, M.; Joshi, C.; Tsung, F. S.; Mori, W. B.; Vieira, J.; Fonseca, R. A.; Silva, L. O. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. ST Accel. Beams 2007 10, 061301.

    Google Scholar 

  12. Pukhov, A.; Meyer-ter-Vehn, J. Laser wake field acceleration: The highly non-linear broken-wave regime. Appl. Phys. B 2002 74, 355–361.

    CAS  Google Scholar 

  13. Esarey, E.; Schroeder, C. B.; Leemans, W. P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 2009 81, 1229–1285.

    CAS  Google Scholar 

  14. Corde, S.; Phuoc, K. T.; Lambert, G.; Fitour, R.; Malka, V.; Rousse, A.; Beck, A.; Lefebvre, E. Femtosecond X rays from laser-plasma accelerators. Rev. Mod. Phys. 2013 85, 1–48.

    CAS  Google Scholar 

  15. Daido, H.; Nishiuchi, M.; Pirozhkov, A. S. Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 2012 75, 056401.

    Google Scholar 

  16. Pukhov, A.; Sheng, Z. M.; Meyer-ter-Vehn, J. Particle acceleration in relativistic laser channels. Phys. Plasmas 1999 6, 2847–2854.

    CAS  Google Scholar 

  17. Pukhov, A.; Meyer-ter-Vehn, J. Relativistic magnetic self-channeling of light in near-critical plasma: Three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 1996 76, 3975–3978.

    CAS  Google Scholar 

  18. Robinson, A. P. L.; Arefiev, A. V.; Neely, D. Generating “superponderomotive” electrons due to a non-wake-field interaction between a laser pulse and a longitudinal electric field. Phys. Rev. Lett. 2013 111, 065002.

    CAS  Google Scholar 

  19. Willingale, L.; Nagel, S. R.; Thomas, A. G. R.; Bellei, C.; Clarke, R. J.; Dangor, A. E.; Heathcote, R.; Kaluza, M. C.; Kamperidis, C.; Kneip, S. et al. Characterization of high-intensity laser propagation in the relativistic transparent regime through measurements of energetic proton beams. Phys. Rev. Lett. 2009 102, 125002.

    CAS  Google Scholar 

  20. Prencipe, I.; Sgattoni, A.; Dellasega, D.; Fedeli, L.; Cialfi, L.; Choi, I. W.; Kim, I. J.; Janulewicz, K. A.; Kakolee, K. F.; Lee, H. W. et al. Development of foam-based layered targets for laser-driven ion beam production. Plasma Phys. Control. Fusion 2016 58, 034019.

    Google Scholar 

  21. Prencipe, I.; Metzkes-Ng, J.; Pazzaglia, A.; Bernert, C.; Dellasega, D.; Fedeli, L.; Formenti, A.; Garten, M.; Kluge, T.; Kraft, S. et al. Efficient laser-driven proton and bremsstrahlung generation from cluster-assembled foam targets. New J. Phys. 2021 23, 093015.

    CAS  Google Scholar 

  22. Rosmej, O. N.; Andreev, N. E.; Zaehter, S.; Zahn, N.; Christ, P.; Borm, B.; Radon, T.; Sokolov, A.; Pugachev, L. P.; Khaghani, D. et al. Interaction of relativistically intense laser pulses with long-scale near critical plasmas for optimization of laser based sources of MeV electrons and gamma-rays. New J. Phys. 2019 21, 043044.

    CAS  Google Scholar 

  23. Rosmej, O. N.; Gyrdymov, M.; Günther, M. M.; Andreev, N. E.; Tavana, P.; Neumayer, P.; Zähter, S.; Zahn, N.; Popov, V. S.; Borisenko, N. G. et al. High-current laser-driven beams of relativistic electrons for high energy density research. Plasma Phys. Control. Fusion 2020 62, 115024.

    CAS  Google Scholar 

  24. Lan, H. Y.; Wu, D.; Liu, J. X.; Zhang, J. Y.; Lu, H. G.; Lv, J. F.; Wu, X. Z.; Luo, W.; Yan, X. Q. Photonuclear production of nuclear isomers using bremsstrahlung induced by laser-wakefield electrons. Nucl. Sci. Tech. 2023 34, 74.

    CAS  Google Scholar 

  25. Prencipe, I.; Fuchs, J.; Pascarelli, S.; Schumacher, D. W.; Stephens, R. B.; Alexander, N. B.; Briggs, R.; Büscher, M.; Cernaianu, M. O.; Choukourov, A. et al. Targets for high repetition rate laser facilities: Needs, challenges and perspectives. High Power Laser Sci. Eng. 2017 5, e17.

    Google Scholar 

  26. Tikhonchuk, V.; Gu, Y. J.; Klimo, O.; Limpouch, J.; Weber, S. Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement schemes. Matter Radiat. Extremes 2019 4, 045402.

    Google Scholar 

  27. Fedeli, L.; Formenti, A.; Cialfi, L.; Pazzaglia, A.; Passoni, M. Ultraintense laser interaction with nanostructured near-critical plasmas. Sci. Rep. 2018 8, 3834.

    Google Scholar 

  28. Shou, Y. R.; Wang, P. J.; Lee, S. G.; Rhee, Y. J.; Lee, H. W.; Yoon, J. W.; Sung, J. H.; Lee, S. K.; Pan, Z.; Kong, D. F. et al. Brilliant femtosecond-laser-driven hard X-ray flashes from carbon nanotube plasma. Nat. Photonics 2023 17, 137–142.

    CAS  Google Scholar 

  29. Ma, W. J.; Song, L.; Yang, R.; Zhang, T. H.; Zhao, Y. C.; Sun, L. F.; Ren, Y.; Liu, D. F.; Liu, L. F.; Shen, J. et al. Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett. 2007 7, 2307–2311.

    CAS  Google Scholar 

  30. Ma, W. J.; Liu, L. Q.; Yang, R.; Zhang, T. H.; Zhang, Z.; Song, L.; Ren, Y.; Shen, J.; Niu, Z. Q.; Zhou, W. Y. et al. Monitoring a micromechanical process in macroscale carbon nanotube films and fibers. Adv. Mater. 2009 21, 603–608.

    CAS  Google Scholar 

  31. Ma, W. J.; Liu, L. Q.; Zhang, Z.; Yang, R.; Liu, G.; Zhang, T. H.; An, X. F.; Yi, X. S.; Ren, Y.; Niu, Z. Q. et al. High-strength composite fibers: Realizing true potential of carbon nanotubes in polymer matrix through continuous reticulate architecture and molecular level couplings. Nano Lett. 2009 9, 2855–2861.

    CAS  Google Scholar 

  32. Liu, L. Q.; Ma, W. J.; Zhang, Z. Macroscopic carbon nanotube assemblies: Preparation, properties, and potential applications. Small 2011 7, 1504–1520.

    CAS  Google Scholar 

  33. Zhou, W. Y.; Bai, X. D.; Wang, E. G.; Xie, S. S. Synthesis, structure, and properties of single-walled carbon nanotubes. Adv. Mater. 2009 21, 4565–4583.

    CAS  Google Scholar 

  34. Ma, W. J.; Feng, B. H.; Ren, Y.; Zeng, Q. S.; Niu, Z. Q.; Li, J. Z.; Zhang, X. X.; Dong, H. B.; Zhou, W. Y.; Xie, S. S. Large third-order optical nonlinearity in directly synthesized single-walled carbon nanotube films. J. Nanosci. Nanotechnol. 2010 10, 7333–7335.

    CAS  Google Scholar 

  35. Li, J. Z.; Ma, W. J.; Song, L.; Niu, Z. Q.; Cai, L.; Zeng, Q. S.; Zhang, X. X.; Dong, H. B.; Zhao, D.; Zhou, W. Y. et al. Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. Nano Lett. 2011 11, 4636–4641.

    CAS  Google Scholar 

  36. Gao, Y.; Li, J. Z.; Liu, L. Q.; Ma, W. J.; Zhou, W. Y.; Xie, S. S.; Zhang, Z. Axial compression of hierarchically structured carbon nanotube fiber embedded in epoxy. Adv. Funct. Mater. 2010 20, 3797–3803.

    CAS  Google Scholar 

  37. Niu, Z. Q.; Zhou, W. Y.; Chen, J.; Feng, G. X.; Li, H.; Ma, W. J.; Li, J. Z.; Dong, H. B.; Ren, Y.; Zhao, D. et al. Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy Environ. Sci. 2011 4, 1440–1446.

    CAS  Google Scholar 

  38. Szerypo, J.; Ma, W.; Bothmann, G.; Hahner, D.; Haug, M.; Hilz, P.; Kreuzer, C.; Lange, R.; Seuferling, S.; Speicher, M. et al. Target fabrication for laser-ion acceleration research at the Technological Laboratory of the LMU Munich. Matter Radiat. Extremes 2019 4, 035201.

    Google Scholar 

  39. Wang, P. J.; Qi, G. J.; Pan, Z.; Kong, D. F.; Shou, Y. R.; Liu, J. B.; Cao, Z. X.; Mei, Z. S.; Xu, S. R.; Liu, Z. P. et al. Fabrication of large-area uniform carbon nanotube foams as near-critical-density targets for laser-plasma experiments. High Power Laser Sci. Eng. 2021 9, e29.

    CAS  Google Scholar 

  40. Bin, J. H.; Ma, W. J.; Wang, H. Y.; Streeter, M. J. V.; Kreuzer, C.; Kiefer, D.; Yeung, M.; Cousens, S.; Foster, P. S.; Dromey, B. et al. Ion acceleration using relativistic pulse shaping in near-critical-density plasmas. Phys. Rev. Lett. 2015 115, 064801.

    CAS  Google Scholar 

  41. Ma, W. J.; Kim, I. J.; Yu, J. Q.; Choi, I. W.; Singh, P. K.; Lee, H. W.; Sung, J. H.; Lee, S. K.; Lin, C.; Liao, Q. et al. Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil. Phys. Rev. Lett. 2019 122, 014803.

    CAS  Google Scholar 

  42. Mei, Z. S.; Pan, Z.; Liu, Z. P.; Xu, S. R.; Shou, Y. R.; Wang, P. J.; Cao, Z. X.; Kong, D. F.; Liang, Y. L.; Peng, Z. Y. et al. Energetic laser-driven proton beams from near-critical-density double-layer targets under moderate relativistic intensities. Phys. Plasmas 2023 30, 033107.

    CAS  Google Scholar 

  43. Wang, P. J.; Gong, Z.; Lee, S. G.; Shou, Y. R.; Geng, Y. X.; Jeon, C.; Kim, I. J.; Lee, H. W.; Yoon, J. W.; Sung, J. H. et al. Super-heavy ions acceleration driven by ultrashort laser pulses at ultrahigh intensity. Phys. Rev. X 2021 11, 021049.

    CAS  Google Scholar 

  44. Kneip, S.; Nagel, S. R.; Bellei, C.; Bourgeois, N.; Dangor, A. E.; Gopal, A.; Heathcote, R.; Mangles, S. P. D.; Marques, J. R.; Maksimchuk, A. et al. Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity. Phys. Rev. Lett. 2008 100, 105006.

    CAS  Google Scholar 

  45. Cipiccia, S.; Islam, M. R.; Ersfeld, B.; Shanks, R. P.; Brunetti, E.; Vieux, G.; Yang, X.; Issac, R. C.; Wiggins, S. M.; Welsh, G. H. et al. Gamma- rays from harmonically resonant betatron oscillations in a plasma wake. Nat. Phys. 2011 7, 867–871.

    CAS  Google Scholar 

  46. Cole, J. M.; Wood, J. C.; Lopes, N. C.; Poder, K.; Abel, R. L.; Alatabi, S.; Bryant, J. S. J.; Jin, A.; Kneip, S.; Mecseki, K. et al. Laser-wakefield accelerators as hard X-ray sources for 3D medical imaging of human bone. Sci. Rep. 2015 5, 13244.

    CAS  Google Scholar 

  47. Khrennikov, K.; Wenz, J.; Buck, A.; Xu, J.; Heigoldt, M.; Veisz, L.; Karsch, S. Tunable all-optical quasimonochromatic Thomson X-ray source in the nonlinear regime. Phys. Rev. Lett. 2015 114, 195003.

    CAS  Google Scholar 

  48. Bin, J. H.; Yeung, M.; Gong, Z.; Wang, H. Y.; Kreuzer, C.; Zhou, M. L.; Streeter, M. J. V.; Foster, P. S.; Cousens, S.; Dromey, B. et al. Enhanced laser-driven ion acceleration by superponderomotive electrons generated from near-critical-density Plasma. Phys. Rev. Lett. 2018 120, 074801.

    CAS  Google Scholar 

  49. Liu, J. B.; Yu, J. Q.; Shou, Y. R.; Wang, D. H.; Hu, R. H.; Tang, Y. H.; Wang, P. J.; Cao, Z. X.; Mei, Z. S.; Lin, C. et al. Generation of bright y-ray/hard X-ray flash with intense femtosecond pulses and double-layer targets. Phys. Plasmas 2019 26, 033109.

    Google Scholar 

  50. Macchi, A.; Pegoraro, F. Lighting up a nest for X-ray emission. Nat. Photonics 2023 17, 129–130.

    CAS  Google Scholar 

  51. Shou, Y. R.; Wang, D. H.; Wang, P. J.; Liu, J. B.; Cao, Z. X.; Mei, Z. S.; Xu, S. R.; Pan, Z.; Kong, D. F.; Qi, G. J. et al. High-efficiency generation of narrowband soft X rays from carbon nanotube foams irradiated by relativistic femtosecond lasers. Opt. Lett. 2021 46, 3969–3972.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the following projects: the National Natural Science Foundation of China Innovation Group Project (No. 11921006), National Grand Instrument Project (No. 2019YFF01014402), and National Science Fund for Distinguished Young Scholars (No. 12225501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W. Carbon nanotubes as outstanding targets for laser-driven particle acceleration. Nano Res. 16, 12572–12578 (2023). https://doi.org/10.1007/s12274-023-6256-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6256-z

Keywords

Navigation